Abstract:With the growth of editing and sharing images through the internet, the importance of protecting the images' authorship has increased. Robust watermarking is a known approach to maintaining copyright protection. Robustness and imperceptibility are two factors that are tried to be maximized through watermarking. Usually, there is a trade-off between these two parameters. Increasing the robustness would lessen the imperceptibility of the watermarking. This paper proposes an adaptive method that determines the strength of the watermark embedding in different parts of the cover image regarding its texture and brightness. Adaptive embedding increases the robustness while preserving the quality of the watermarked image. Experimental results also show that the proposed method can effectively reconstruct the embedded payload in different kinds of common watermarking attacks. Our proposed method has shown good performance compared to a recent technique.
Abstract:Image inpainting is an effective method to enhance distorted digital images. Different inpainting methods use the information of neighboring pixels to predict the value of missing pixels. Recently deep neural networks have been used to learn structural and semantic details of images for inpainting purposes. In this paper, we propose a network for image inpainting. This network, similar to U-Net, extracts various features from images, leading to better results. We improved the final results by replacing the damaged pixels with the recovered pixels of the output images. Our experimental results show that this method produces high-quality results compare to the traditional methods.