Abstract:Alzheimer's disease is a progressive neurodegenerative disorder that primarily affects cognitive functions such as memory, thinking, and behavior. In this disease, there is a critical phase, mild cognitive impairment, that is really important to be diagnosed early since some patients with progressive MCI will develop the disease. This study delves into the challenging task of classifying Alzheimer's disease into four distinct groups: control normal (CN), progressive mild cognitive impairment (pMCI), stable mild cognitive impairment (sMCI), and Alzheimer's disease (AD). This classification is based on a thorough examination of PET scan images obtained from the ADNI dataset, which provides a thorough understanding of the disease's progression. Several deep-learning and traditional machine-learning models have been used to detect Alzheimer's disease. In this paper, three deep-learning models, namely VGG16 and AlexNet, and a custom Convolutional neural network (CNN) with 8-fold cross-validation have been used for classification. Finally, an ensemble technique is used to improve the overall result of these models. The results show that using deep-learning models to tell the difference between MCI patients gives an overall average accuracy of 93.13% and an AUC of 94.4%.
Abstract:Placing applications in mobile edge computing servers presents a complex challenge involving many servers, users, and their requests. Existing algorithms take a long time to solve high-dimensional problems with significant uncertainty scenarios. Therefore, an efficient approach is required to maximize the quality of service while considering all technical constraints. One of these approaches is machine learning, which emulates optimal solutions for application placement in edge servers. Machine learning models are expected to learn how to allocate user requests to servers based on the spatial positions of users and servers. In this study, the problem is formulated as a two-stage stochastic programming. A sufficient amount of training records is generated by varying parameters such as user locations, their request rates, and solving the optimization model. Then, based on the distance features of each user from the available servers and their request rates, machine learning models generate decision variables for the first stage of the stochastic optimization model, which is the user-to-server request allocation, and are employed as independent decision agents that reliably mimic the optimization model. Support Vector Machines (SVM) and Multi-layer Perceptron (MLP) are used in this research to achieve practical decisions from the stochastic optimization models. The performance of each model has shown an execution effectiveness of over 80%. This research aims to provide a more efficient approach for tackling high-dimensional problems and scenarios with uncertainties in mobile edge computing by leveraging machine learning models for optimal decision-making in request allocation to edge servers. These results suggest that machine-learning models can significantly improve solution times compared to conventional approaches.