Abstract:Alzheimer's disease is a progressive neurodegenerative disorder that primarily affects cognitive functions such as memory, thinking, and behavior. In this disease, there is a critical phase, mild cognitive impairment, that is really important to be diagnosed early since some patients with progressive MCI will develop the disease. This study delves into the challenging task of classifying Alzheimer's disease into four distinct groups: control normal (CN), progressive mild cognitive impairment (pMCI), stable mild cognitive impairment (sMCI), and Alzheimer's disease (AD). This classification is based on a thorough examination of PET scan images obtained from the ADNI dataset, which provides a thorough understanding of the disease's progression. Several deep-learning and traditional machine-learning models have been used to detect Alzheimer's disease. In this paper, three deep-learning models, namely VGG16 and AlexNet, and a custom Convolutional neural network (CNN) with 8-fold cross-validation have been used for classification. Finally, an ensemble technique is used to improve the overall result of these models. The results show that using deep-learning models to tell the difference between MCI patients gives an overall average accuracy of 93.13% and an AUC of 94.4%.
Abstract:Early diagnosis of Alzheimer's disease and its prodromal stage, also known as mild cognitive impairment (MCI), is critical since some patients with progressive MCI will develop the disease. We propose a multi-stream deep convolutional neural network fed with patch-based imaging data to classify stable MCI and progressive MCI. First, we compare MRI images of Alzheimer's disease with cognitively normal subjects to identify distinct anatomical landmarks using a multivariate statistical test. These landmarks are then used to extract patches that are fed into the proposed multi-stream convolutional neural network to classify MRI images. Next, we train the architecture in a separate scenario using samples from Alzheimer's disease images, which are anatomically similar to the progressive MCI ones and cognitively normal images to compensate for the lack of progressive MCI training data. Finally, we transfer the trained model weights to the proposed architecture in order to fine-tune the model using progressive MCI and stable MCI data. Experimental results on the ADNI-1 dataset indicate that our method outperforms existing methods for MCI classification, with an F1-score of 85.96%.