Abstract:The use of hyperspectral imaging to investigate food samples has grown due to the improved performance and lower cost of spectroscopy instrumentation. Food engineers use hyperspectral images to classify the type and quality of a food sample, typically using classification methods. In order to train these methods, every pixel in each training image needs to be labelled. Typically, computationally cheap threshold-based approaches are used to label the pixels, and classification methods are trained based on those labels. However, threshold-based approaches are subjective and cannot be generalized across hyperspectral images taken in different conditions and of different foods. Here a consensus-constrained parsimonious Gaussian mixture model (ccPGMM) is proposed to label pixels in hyperspectral images using a model-based clustering approach. The ccPGMM utilizes available information on the labels of a small number of pixels and the relationship between those pixels and neighbouring pixels as constraints when clustering the rest of the pixels in the image. A latent variable model is used to represent the high-dimensional data in terms of a small number of underlying latent factors. To ensure computational feasibility, a consensus clustering approach is employed, where the data are divided into multiple randomly selected subsets of variables and constrained clustering is applied to each data subset; the clustering results are then consolidated across all data subsets to provide a consensus clustering solution. The ccPGMM approach is applied to simulated datasets and real hyperspectral images of three types of puffed cereal, corn, rice, and wheat. Improved clustering performance and computational efficiency are demonstrated when compared to other current state-of-the-art approaches.
Abstract:The diagnosis of prostate cancer is challenging due to the heterogeneity of its presentations, leading to the over diagnosis and treatment of non-clinically important disease. Accurate diagnosis can directly benefit a patient's quality of life and prognosis. Towards addressing this issue, we present a learning model for the automatic identification of prostate cancer. While many prostate cancer studies have adopted Raman spectroscopy approaches, none have utilised the combination of Raman Chemical Imaging (RCI) and other imaging modalities. This study uses multimodal images formed from stained Digital Histopathology (DP) and unstained RCI. The approach was developed and tested on a set of 178 clinical samples from 32 patients, containing a range of non-cancerous, Gleason grade 3 (G3) and grade 4 (G4) tissue microarray samples. For each histological sample, there is a pathologist labelled DP - RCI image pair. The hypothesis tested was whether multimodal image models can outperform single modality baseline models in terms of diagnostic accuracy. Binary non-cancer/cancer models and the more challenging G3/G4 differentiation were investigated. Regarding G3/G4 classification, the multimodal approach achieved a sensitivity of 73.8% and specificity of 88.1% while the baseline DP model showed a sensitivity and specificity of 54.1% and 84.7% respectively. The multimodal approach demonstrated a statistically significant 12.7% AUC advantage over the baseline with a value of 85.8% compared to 73.1%, also outperforming models based solely on RCI and median Raman spectra. Feature fusion of DP and RCI does not improve the more trivial task of tumour identification but does deliver an observed advantage in G3/G4 discrimination. Building on these promising findings, future work could include the acquisition of larger datasets for enhanced model generalization.