Abstract:Understanding trajectories in multi-agent scenarios requires addressing various tasks, including predicting future movements, imputing missing observations, inferring the status of unseen agents, and classifying different global states. Traditional data-driven approaches often handle these tasks separately with specialized models. We introduce TranSPORTmer, a unified transformer-based framework capable of addressing all these tasks, showcasing its application to the intricate dynamics of multi-agent sports scenarios like soccer and basketball. Using Set Attention Blocks, TranSPORTmer effectively captures temporal dynamics and social interactions in an equivariant manner. The model's tasks are guided by an input mask that conceals missing or yet-to-be-predicted observations. Additionally, we introduce a CLS extra agent to classify states along soccer trajectories, including passes, possessions, uncontrolled states, and out-of-play intervals, contributing to an enhancement in modeling trajectories. Evaluations on soccer and basketball datasets show that TranSPORTmer outperforms state-of-the-art task-specific models in player forecasting, player forecasting-imputation, ball inference, and ball imputation. https://youtu.be/8VtSRm8oGoE
Abstract:Motion prediction in soccer involves capturing complex dynamics from player and ball interactions. We present FootBots, an encoder-decoder transformer-based architecture addressing motion prediction and conditioned motion prediction through equivariance properties. FootBots captures temporal and social dynamics using set attention blocks and multi-attention block decoder. Our evaluation utilizes two datasets: a real soccer dataset and a tailored synthetic one. Insights from the synthetic dataset highlight the effectiveness of FootBots' social attention mechanism and the significance of conditioned motion prediction. Empirical results on real soccer data demonstrate that FootBots outperforms baselines in motion prediction and excels in conditioned tasks, such as predicting the players based on the ball position, predicting the offensive (defensive) team based on the ball and the defensive (offensive) team, and predicting the ball position based on all players. Our evaluation connects quantitative and qualitative findings. https://youtu.be/9kaEkfzG3L8