Abstract:Abstract, or disentangled, representations are a promising mathematical framework for efficient and effective generalization in both biological and artificial systems. We investigate abstract representations in the context of multi-task classification over noisy evidence streams -- a canonical decision-making neuroscience paradigm. We derive theoretical bounds that guarantee the emergence of disentangled representations in the latent state of any optimal multi-task classifier, when the number of tasks exceeds the dimensionality of the state space. We experimentally confirm that RNNs trained on multi-task classification learn disentangled representations in the form of continuous attractors, leading to zero-shot out-of-distribution (OOD) generalization. We demonstrate the flexibility of the abstract RNN representations across various decision boundary geometries and in tasks requiring classification confidence estimation. Our framework suggests a general principle for the formation of cognitive maps that organize knowledge to enable flexible generalization in biological and artificial systems alike, and closely relates to representations found in humans and animals during decision-making and spatial reasoning tasks.
Abstract:Land Cover (LC) image classification has become increasingly significant in understanding environmental changes, urban planning, and disaster management. However, traditional LC methods are often labor-intensive and prone to human error. This paper explores state-of-the-art deep learning models for enhanced accuracy and efficiency in LC analysis. We compare convolutional neural networks (CNN) against transformer-based methods, showcasing their applications and advantages in LC studies. We used EuroSAT, a patch-based LC classification data set based on Sentinel-2 satellite images and achieved state-of-the-art results using current transformer models.