Abstract:We introduce Atla Selene Mini, a state-of-the-art small language model-as-a-judge (SLMJ). Selene Mini is a general-purpose evaluator that outperforms the best SLMJs and GPT-4o-mini on overall performance across 11 out-of-distribution benchmarks, spanning absolute scoring, classification, and pairwise preference tasks. It is the highest-scoring 8B generative model on RewardBench, surpassing strong baselines like GPT-4o and specialized judges. To achieve this, we develop a principled data curation strategy that augments public datasets with synthetically generated critiques and ensures high quality through filtering and dataset ablations. We train our model on a combined direct preference optimization (DPO) and supervised fine-tuning (SFT) loss, and produce a highly promptable evaluator that excels in real-world scenarios. Selene Mini shows dramatically improved zero-shot agreement with human expert evaluations on financial and medical industry datasets. It is also robust to variations in prompt format. Preliminary results indicate that Selene Mini is the top-ranking evaluator in a live, community-driven Judge Arena. We release the model weights on HuggingFace (https://hf.co/AtlaAI/Selene-1-Mini-Llama-3.1-8B) and Ollama to encourage widespread community adoption.
Abstract:Assessing whether a molecule can be synthesised is a primary task in drug discovery. It enables computational chemists to filter for viable compounds or bias molecular generative models. The notion of synthesisability is dynamic as it evolves depending on the availability of key compounds. A common approach in drug discovery involves exploring the chemical space surrounding synthetically-accessible intermediates. This strategy improves the synthesisability of the derived molecules due to the availability of key intermediates. Existing synthesisability scoring methods such as SAScore, SCScore and RAScore, cannot condition on intermediates dynamically. Our approach, Leap, is a GPT-2 model trained on the depth, or longest linear path, of predicted synthesis routes that allows information on the availability of key intermediates to be included at inference time. We show that Leap surpasses all other scoring methods by at least 5% on AUC score when identifying synthesisable molecules, and can successfully adapt predicted scores when presented with a relevant intermediate compound.