Abstract:Traditional computer-aided synthesis planning (CASP) methods rely on iterative single-step predictions, leading to exponential search space growth that limits efficiency and scalability. We introduce a transformer-based model that directly generates multi-step synthetic routes as a single string by conditionally predicting each molecule based on all preceding ones. The model accommodates specific conditions such as the desired number of steps and starting materials, outperforming state-of-the-art methods on the PaRoutes dataset with a 2.2x improvement in Top-1 accuracy on the n$_1$ test set and a 3.3x improvement on the n$_5$ test set. It also successfully predicts routes for FDA-approved drugs not included in the training data, showcasing its generalization capabilities. While the current suboptimal diversity of the training set may impact performance on less common reaction types, our approach presents a promising direction towards fully automated retrosynthetic planning.
Abstract:The incredible capabilities of generative artificial intelligence models have inevitably led to their application in the domain of drug discovery. It is therefore of tremendous interest to develop methodologies that enhance the abilities and applicability of these powerful tools. In this work, we present a novel and efficient semi-supervised active learning methodology that allows for the fine-tuning of a generative model with respect to an objective function by strategically operating within a constructed representation of the sample space. In the context of targeted molecular generation, we demonstrate the ability to fine-tune a GPT-based molecular generator with respect to an attractive interaction-based scoring function by strategically operating within a chemical space proxy, thereby maximizing attractive interactions between the generated molecules and a protein target. Importantly, our approach does not require the individual evaluation of all data points that are used for fine-tuning, enabling the incorporation of computationally expensive metrics. We are hopeful that the inherent generality of this methodology ensures that it will remain applicable as this exciting field evolves. To facilitate implementation and reproducibility, we have made all of our software available through the open-source ChemSpaceAL Python package.