Abstract:Synthetic data generation has been proven successful in improving model performance and robustness in the context of scarce or low-quality data. Using the data valuation framework to statistically identify beneficial and detrimental observations, we introduce a novel augmentation pipeline that generates only high-value training points based on hardness characterization. We first demonstrate via benchmarks on real data that Shapley-based data valuation methods perform comparably with learning-based methods in hardness characterisation tasks, while offering significant theoretical and computational advantages. Then, we show that synthetic data generators trained on the hardest points outperform non-targeted data augmentation on simulated data and on a large scale credit default prediction task. In particular, our approach improves the quality of out-of-sample predictions and it is computationally more efficient compared to non-targeted methods.
Abstract:Data preprocessing is a crucial part of any machine learning pipeline, and it can have a significant impact on both performance and training efficiency. This is especially evident when using deep neural networks for time series prediction and classification: real-world time series data often exhibit irregularities such as multi-modality, skewness and outliers, and the model performance can degrade rapidly if these characteristics are not adequately addressed. In this work, we propose the EDAIN (Extended Deep Adaptive Input Normalization) layer, a novel adaptive neural layer that learns how to appropriately normalize irregular time series data for a given task in an end-to-end fashion, instead of using a fixed normalization scheme. This is achieved by optimizing its unknown parameters simultaneously with the deep neural network using back-propagation. Our experiments, conducted using synthetic data, a credit default prediction dataset, and a large-scale limit order book benchmark dataset, demonstrate the superior performance of the EDAIN layer when compared to conventional normalization methods and existing adaptive time series preprocessing layers.