Abstract:Prenatal screening with ultrasound can lower neonatal mortality significantly for selected cardiac abnormalities. However, the need for human expertise, coupled with the high volume of screening cases, limits the practically achievable detection rates. In this paper we discuss the potential for deep learning techniques to aid in the detection of congenital heart disease (CHD) in fetal ultrasound. We propose a pipeline for automated data curation and classification. During both training and inference, we exploit an auxiliary view classification task to bias features toward relevant cardiac structures. This bias helps to improve in F1-scores from 0.72 and 0.77 to 0.87 and 0.85 for healthy and CHD classes respectively.
Abstract:Semi-supervised learning methods have achieved excellent performance on standard benchmark datasets using very few labelled images. Anatomy classification in fetal 2D ultrasound is an ideal problem setting to test whether these results translate to non-ideal data. Our results indicate that inclusion of a challenging background class can be detrimental and that semi-supervised learning mostly benefits classes that are already distinct, sometimes at the expense of more similar classes.