Abstract:Semi-supervised learning has been an important approach to address challenges in extracting entities and relations from limited data. However, current semi-supervised works handle the two tasks (i.e., Named Entity Recognition and Relation Extraction) separately and ignore the cross-correlation of entity and relation instances as well as the existence of similar instances across unlabeled data. To alleviate the issues, we propose Jointprop, a Heterogeneous Graph-based Propagation framework for joint semi-supervised entity and relation extraction, which captures the global structure information between individual tasks and exploits interactions within unlabeled data. Specifically, we construct a unified span-based heterogeneous graph from entity and relation candidates and propagate class labels based on confidence scores. We then employ a propagation learning scheme to leverage the affinities between labelled and unlabeled samples. Experiments on benchmark datasets show that our framework outperforms the state-of-the-art semi-supervised approaches on NER and RE tasks. We show that the joint semi-supervised learning of the two tasks benefits from their codependency and validates the importance of utilizing the shared information between unlabeled data.
Abstract:Event Detection, which aims to identify and classify mentions of event instances from unstructured articles, is an important task in Natural Language Processing (NLP). Existing techniques for event detection only use homogeneous one-hot vectors to represent the event type classes, ignoring the fact that the semantic meaning of the types is important to the task. Such an approach is inefficient and prone to overfitting. In this paper, we propose a Semantic Pivoting Model for Effective Event Detection (SPEED), which explicitly incorporates prior information during training and captures semantically meaningful correlations between input and events. Experimental results show that our proposed model achieves state-of-the-art performance and outperforms the baselines in multiple settings without using any external resources.