Abstract:Portrait sketching involves capturing identity specific attributes of a real face with abstract lines and shades. Unlike photo-realistic images, a good portrait sketch generation method needs selective attention to detail, making the problem challenging. This paper introduces \textbf{Portrait Sketching StyleGAN (PS-StyleGAN)}, a style transfer approach tailored for portrait sketch synthesis. We leverage the semantic $W+$ latent space of StyleGAN to generate portrait sketches, allowing us to make meaningful edits, like pose and expression alterations, without compromising identity. To achieve this, we propose the use of Attentive Affine transform blocks in our architecture, and a training strategy that allows us to change StyleGAN's output without finetuning it. These blocks learn to modify style latent code by paying attention to both content and style latent features, allowing us to adapt the outputs of StyleGAN in an inversion-consistent manner. Our approach uses only a few paired examples ($\sim 100$) to model a style and has a short training time. We demonstrate PS-StyleGAN's superiority over the current state-of-the-art methods on various datasets, qualitatively and quantitatively.
Abstract:This paper presents an innovative approach to achieve face cartoonisation while preserving the original identity and accommodating various poses. Unlike previous methods in this field that relied on conditional-GANs, which posed challenges related to dataset requirements and pose training, our approach leverages the expressive latent space of StyleGAN. We achieve this by introducing an encoder that captures both pose and identity information from images and generates a corresponding embedding within the StyleGAN latent space. By subsequently passing this embedding through a pre-trained generator, we obtain the desired cartoonised output. While many other approaches based on StyleGAN necessitate a dedicated and fine-tuned StyleGAN model, our method stands out by utilizing an already-trained StyleGAN designed to produce realistic facial images. We show by extensive experimentation how our encoder adapts the StyleGAN output to better preserve identity when the objective is cartoonisation.