Abstract:Artificial immune system can be used to generate schedules in changing environments and it has been proven to be more robust than schedules developed using a genetic algorithm. Good schedules can be produced especially when the number of the antigens is increased. However, an increase in the range of the antigens had somehow affected the fitness of the immune system. In this research, we are trying to improve the result of the system by rescheduling the same problem using the same method while at the same time maintaining the robustness of the schedules.
Abstract:Previous research has shown that artificial immune systems can be used to produce robust schedules in a manufacturing environment. The main goal is to develop building blocks (antibodies) of partial schedules that can be used to construct backup solutions (antigens) when disturbances occur during production. The building blocks are created based upon underpinning ideas from artificial immune systems and evolved using a genetic algorithm (Phase I). Each partial schedule (antibody) is assigned a fitness value and the best partial schedules are selected to be converted into complete schedules (antigens). We further investigate whether simulated annealing and the great deluge algorithm can improve the results when hybridised with our artificial immune system (Phase II). We use ten fixed solutions as our target and measure how well we cover these specific scenarios.