Abstract:Multispectral (MS) snapshot cameras equipped with a MS filter array (MSFA), capture multiple spectral bands in a single shot, resulting in a raw mosaic image where each pixel holds only one channel value. The fully-defined MS image is estimated from the raw one through $\textit{demosaicing}$, which inevitably introduces spatio-spectral artifacts. Moreover, training on fully-defined MS images can be computationally intensive, particularly with deep neural networks (DNNs), and may result in features lacking discrimination power due to suboptimal learning of spatio-spectral interactions. Furthermore, outdoor MS image acquisition occurs under varying lighting conditions, leading to illumination-dependent features. This paper presents an original approach to learn discriminant and illumination-robust features directly from raw images. It involves: $\textit{raw spectral constancy}$ to mitigate the impact of illumination, $\textit{MSFA-preserving}$ transformations suited for raw image augmentation to train DNNs on diverse raw textures, and $\textit{raw-mixing}$ to capture discriminant spatio-spectral interactions in raw images. Experiments on MS image classification show that our approach outperforms both handcrafted and recent deep learning-based methods, while also requiring significantly less computational effort.
Abstract:We introduce an innovative deep learning-based method that uses a denoising diffusion-based model to translate low-resolution images to high-resolution ones from different optical sensors while preserving the contents and avoiding undesired artifacts. The proposed method is trained and tested on a large and diverse data set of paired Sentinel-II and Planet Dove images. We show that it can solve serious image generation issues observed when the popular classifier-free guided Denoising Diffusion Implicit Model (DDIM) framework is used in the task of Image-to-Image Translation of multi-sensor optical remote sensing images and that it can generate large images with highly consistent patches, both in colors and in features. Moreover, we demonstrate how our method improves heterogeneous change detection results in two urban areas: Beirut, Lebanon, and Austin, USA. Our contributions are: i) a new training and testing algorithm based on denoising diffusion models for optical image translation; ii) a comprehensive image quality evaluation and ablation study; iii) a comparison with the classifier-free guided DDIM framework; and iv) change detection experiments on heterogeneous data.