Abstract:The language diversity in India's education sector poses a significant challenge, hindering inclusivity. Despite the democratization of knowledge through online educational content, the dominance of English, as the internet's lingua franca, limits accessibility, emphasizing the crucial need for translation into Indian languages. Despite existing Speech-to-Speech Machine Translation (SSMT) technologies, the lack of intonation in these systems gives monotonous translations, leading to a loss of audience interest and disengagement from the content. To address this, our paper introduces a dataset with stress annotations in Indian English and also a Text-to-Speech (TTS) architecture capable of incorporating stress into synthesized speech. This dataset is used for training a stress detection model, which is then used in the SSMT system for detecting stress in the source speech and transferring it into the target language speech. The TTS architecture is based on FastPitch and can modify the variances based on stressed words given. We present an Indian English-to-Hindi SSMT system that can transfer stress and aim to enhance the overall quality and engagement of educational content.