Abstract:Oriented object detection is one of the most fundamental and challenging tasks in remote sensing, aiming at locating the oriented objects of numerous predefined object categories. Recently, deep learning based methods have achieved remarkable performance in detecting oriented objects in remote sensing imagery. However, a thorough review of the literature in remote sensing has not yet emerged. Therefore, we give a comprehensive survey of recent advances and cover many aspects of oriented object detection, including problem definition, commonly used datasets, evaluation protocols, detection frameworks, oriented object representations, and feature representations. Besides, we analyze and discuss state-of-the-art methods. We finally discuss future research directions to put forward some useful research guidance. We believe that this survey shall be valuable to researchers across academia and industry.