Abstract:The safe deployment of machine learning and AI models in open-world settings hinges critically on the ability to detect out-of-distribution (OOD) data accurately, data samples that contrast vastly from what the model was trained with. Current approaches to OOD detection often require further training the model, and/or statistics about the training data which may no longer be accessible. Additionally, many existing OOD detection methods struggle to maintain performance when transferred across different architectures. Our research tackles these issues by proposing a simple, post-hoc method that does not require access to the training data distribution, keeps a trained network intact, and holds strong performance across a variety of architectures. Our method, Logit Scaling (LTS), as the name suggests, simply scales the logits in a manner that effectively distinguishes between in-distribution (ID) and OOD samples. We tested our method on benchmarks across various scales, including CIFAR-10, CIFAR-100, ImageNet and OpenOOD. The experiments cover 3 ID and 14 OOD datasets, as well as 9 model architectures. Overall, we demonstrate state-of-the-art performance, robustness and adaptability across different architectures, paving the way towards a universally applicable solution for advanced OOD detection.
Abstract:The separation between training and deployment of machine learning models implies that not all scenarios encountered in deployment can be anticipated during training, and therefore relying solely on advancements in training has its limits. Out-of-distribution (OOD) detection is an important area that stress-tests a model's ability to handle unseen situations: Do models know when they don't know? Existing OOD detection methods either incur extra training steps, additional data or make nontrivial modifications to the trained network. In contrast, in this work, we propose an extremely simple, post-hoc, on-the-fly activation shaping method, ASH, where a large portion (e.g. 90%) of a sample's activation at a late layer is removed, and the rest (e.g. 10%) simplified or lightly adjusted. The shaping is applied at inference time, and does not require any statistics calculated from training data. Experiments show that such a simple treatment enhances in-distribution and out-of-distribution sample distinction so as to allow state-of-the-art OOD detection on ImageNet, and does not noticeably deteriorate the in-distribution accuracy. We release alongside the paper two calls for explanation and validation, believing the collective power to further validate and understand the discovery. Calls, video and code can be found at: https://andrijazz.github.io/ash