Abstract:The wide spread of Automatic Identification System (AIS) has motivated several maritime analytics operations. Vessel Location Forecasting (VLF) is one of the most critical operations for maritime awareness. However, accurate VLF is a challenging problem due to the complexity and dynamic nature of maritime traffic conditions. Furthermore, as privacy concerns and restrictions have grown, training data has become increasingly fragmented, resulting in dispersed databases of several isolated data silos among different organizations, which in turn decreases the quality of learning models. In this paper, we propose an efficient VLF solution based on LSTM neural networks, in two variants, namely Nautilus and FedNautilus for the centralized and the federated learning approach, respectively. We also demonstrate the superiority of the centralized approach with respect to current state of the art and discuss the advantages and disadvantages of the federated against the centralized approach.
Abstract:Predictive analytics over mobility data are of great importance since they can assist an analyst to predict events, such as collisions, encounters, traffic jams, etc. A typical example of such analytics is future location prediction, where the goal is to predict the future location of a moving object,given a look-ahead time. What is even more challenging is being able to accurately predict collective behavioural patterns of movement, such as co-movement patterns. In this paper, we provide an accurate solution to the problem of Online Prediction of Co-movement Patterns. In more detail, we split the original problem into two sub-problems, namely Future Location Prediction and Evolving Cluster Detection. Furthermore, in order to be able to calculate the accuracy of our solution, we propose a co-movement pattern similarity measure, which facilitates us to match the predicted clusters with the actual ones. Finally, the accuracy of our solution is demonstrated experimentally over a real dataset from the maritime domain.