Abstract:Federated Learning (FL) is a distributed machine learning setting that requires multiple clients to collaborate on training a model while maintaining data privacy. The unaddressed inherent sparsity in data and models often results in overly dense models and poor generalizability under data and client participation heterogeneity. We propose FL with an L0 constraint on the density of non-zero parameters, achieved through a reparameterization using probabilistic gates and their continuous relaxation: originally proposed for sparsity in centralized machine learning. We show that the objective for L0 constrained stochastic minimization naturally arises from an entropy maximization problem of the stochastic gates and propose an algorithm based on federated stochastic gradient descent for distributed learning. We demonstrate that the target density (rho) of parameters can be achieved in FL, under data and client participation heterogeneity, with minimal loss in statistical performance for linear and non-linear models: Linear regression (LR), Logistic regression (LG), Softmax multi-class classification (MC), Multi-label classification with logistic units (MLC), Convolution Neural Network (CNN) for multi-class classification (MC). We compare the results with a magnitude pruning-based thresholding algorithm for sparsity in FL. Experiments on synthetic data with target density down to rho = 0.05 and publicly available RCV1, MNIST, and EMNIST datasets with target density down to rho = 0.005 demonstrate that our approach is communication-efficient and consistently better in statistical performance.
Abstract:This paper introduces the Bi-linear consensus Alternating Direction Method of Multipliers (Bi-cADMM), aimed at solving large-scale regularized Sparse Machine Learning (SML) problems defined over a network of computational nodes. Mathematically, these are stated as minimization problems with convex local loss functions over a global decision vector, subject to an explicit $\ell_0$ norm constraint to enforce the desired sparsity. The considered SML problem generalizes different sparse regression and classification models, such as sparse linear and logistic regression, sparse softmax regression, and sparse support vector machines. Bi-cADMM leverages a bi-linear consensus reformulation of the original non-convex SML problem and a hierarchical decomposition strategy that divides the problem into smaller sub-problems amenable to parallel computing. In Bi-cADMM, this decomposition strategy is based on a two-phase approach. Initially, it performs a sample decomposition of the data and distributes local datasets across computational nodes. Subsequently, a delayed feature decomposition of the data is conducted on Graphics Processing Units (GPUs) available to each node. This methodology allows Bi-cADMM to undertake computationally intensive data-centric computations on GPUs, while CPUs handle more cost-effective computations. The proposed algorithm is implemented within an open-source Python package called Parallel Sparse Fitting Toolbox (PsFiT), which is publicly available. Finally, computational experiments demonstrate the efficiency and scalability of our algorithm through numerical benchmarks across various SML problems featuring distributed datasets.