Abstract:In this paper an exhaustive review and comprehensive analysis of recent and former deep learning methods in 3D Semantic Segmentation (3DSS) is presented. In the related literature, the taxonomy scheme used for the classification of the 3DSS deep learning methods is ambiguous. Based on the taxonomy schemes of 9 existing review papers, a new taxonomy scheme of the 3DSS deep learning methods is proposed, aiming to standardize it and improve the comparability and clarity across related studies. Furthermore, an extensive overview of the available 3DSS indoor and outdoor datasets is provided along with their links. The core part of the review is the detailed presentation of recent and former 3DSS deep learning methods and their classification using the proposed taxonomy scheme along with their GitHub repositories. Additionally, a brief but informative analysis of the evaluation metrics and loss functions used in 3DSS is included. Finally, a fruitful discussion of the examined 3DSS methods and datasets, is presented to foster new research directions and applications in the field of 3DSS. Supplementary, to this review a GitHub repository is provided (https://github.com/thobet/Deep-Learning-on-3D-Semantic-Segmentation-a- Detailed-Review) including a quick classification of over 400 3DSS methods, using the proposed taxonomy scheme.
Abstract:Computer vision for detecting building pathologies has interested researchers for quite some time. Vision-based crack detection is a non-destructive assessment technique, which can be useful especially for Cultural Heritage (CH) where strict regulations apply and, even simple, interventions are not permitted. Recently, shallow and deep machine learning architectures applied on various types of imagery are gaining ground. In this article a crack detection methodology for stone masonry walls is presented. In the proposed approach, crack detection is approached as an unsupervised anomaly detection problem on RGB (Red Green Blue) image patches. Towards this direction, some of the most popular state of the art CNN (Convolutional Neural Network) architectures are deployed and modified to binary classify the images or image patches by predicting a specific class for the tested imagery; 'Crack' or 'No crack', and detect and localize those cracks on the RGB imagery with high accuracy. Testing of the model was performed on various test sites and random images retrieved from the internet and collected by the authors and results suggested the high performance of specific networks compared to the rest, considering also the small numbers of epochs required for training. Those results met the accuracy delivered by more complex and computationally heavy approaches, requiring a large amount of data for training. Source code is available on GitHub https://github.com/pagraf/Crack-detection while datasets are available on Zenodo https://doi.org/10.5281/zenodo.6516913 .
Abstract:Mapping the seafloor with underwater imaging cameras is of significant importance for various applications including marine engineering, geology, geomorphology, archaeology and biology. For shallow waters, among the underwater imaging challenges, caustics i.e., the complex physical phenomena resulting from the projection of light rays being refracted by the wavy surface, is likely the most crucial one. Caustics is the main factor during underwater imaging campaigns that massively degrade image quality and affect severely any 2D mosaicking or 3D reconstruction of the seabed. In this work, we propose a novel method for correcting the radiometric effects of caustics on shallow underwater imagery. Contrary to the state-of-the-art, the developed method can handle seabed and riverbed of any anaglyph, correcting the images using real pixel information, thus, improving image matching and 3D reconstruction processes. In particular, the developed method employs deep learning architectures in order to classify image pixels to "non-caustics" and "caustics". Then, exploits the 3D geometry of the scene to achieve a pixel-wise correction, by transferring appropriate color values between the overlapping underwater images. Moreover, to fill the current gap, we have collected, annotated and structured a real-world caustic dataset, namely R-CAUSTIC, which is openly available. Overall, based on the experimental results and validation the developed methodology is quite promising in both detecting caustics and reconstructing their intensity.
Abstract:The determination of accurate bathymetric information is a key element for near offshore activities, hydrological studies such as coastal engineering applications, sedimentary processes, hydrographic surveying as well as archaeological mapping and biological research. UAV imagery processed with Structure from Motion (SfM) and Multi View Stereo (MVS) techniques can provide a low-cost alternative to established shallow seabed mapping techniques offering as well the important visual information. Nevertheless, water refraction poses significant challenges on depth determination. Till now, this problem has been addressed through customized image-based refraction correction algorithms or by modifying the collinearity equation. In this paper, in order to overcome the water refraction errors, we employ machine learning tools that are able to learn the systematic underestimation of the estimated depths. In the proposed approach, based on known depth observations from bathymetric LiDAR surveys, an SVR model was developed able to estimate more accurately the real depths of point clouds derived from SfM-MVS procedures. Experimental results over two test sites along with the performed quantitative validation indicated the high potential of the developed approach.