Abstract:Globalisation and colonisation have led the vast majority of the world to use only a fraction of languages, such as English and French, to communicate, excluding many others. This has severely affected the survivability of many now-deemed vulnerable or endangered languages, such as Occitan and Sicilian. These languages often share some characteristics, such as elements of their grammar and lexicon, with other high-resource languages, e.g. French or Italian. They can be clustered into groups of language varieties with various degrees of mutual intelligibility. Current search systems are not usually trained on many of these low-resource varieties, leading search users to express their needs in a high-resource language instead. This problem is further complicated when most information content is expressed in a high-resource language, inhibiting even more retrieval in low-resource languages. We show that current search systems are not robust across language varieties, severely affecting retrieval effectiveness. Therefore, it would be desirable for these systems to leverage the capabilities of neural models to bridge the differences between these varieties. This can allow users to express their needs in their low-resource variety and retrieve the most relevant documents in a high-resource one. To address this, we propose fine-tuning neural rankers on pairs of language varieties, thereby exposing them to their linguistic similarities. We find that this approach improves the performance of the varieties upon which the models were directly trained, thereby regularising these models to generalise and perform better even on unseen language variety pairs. We also explore whether this approach can transfer across language families and observe mixed results that open doors for future research.
Abstract:One advantage of neural ranking models is that they are meant to generalise well in situations of synonymity i.e. where two words have similar or identical meanings. In this paper, we investigate and quantify how well various ranking models perform in a clear-cut case of synonymity: when words are simply expressed in different surface forms due to regional differences in spelling conventions (e.g., color vs colour). We first explore the prevalence of American and British English spelling conventions in datasets used for the pre-training, training and evaluation of neural retrieval methods, and find that American spelling conventions are far more prevalent. Despite these biases in the training data, we find that retrieval models often generalise well in this case of synonymity. We explore the effect of document spelling normalisation in retrieval and observe that all models are affected by normalising the document's spelling. While they all experience a drop in performance when normalised to a different spelling convention than that of the query, we observe varied behaviour when the document is normalised to share the query spelling convention: lexical models show improvements, dense retrievers remain unaffected, and re-rankers exhibit contradictory behaviour.