Abstract:AI is anticipated to enhance human decision-making in high-stakes domains like aviation, but adoption is often hindered by challenges such as inappropriate reliance and poor alignment with users' decision-making. Recent research suggests that a core underlying issue is the recommendation-centric design of many AI systems, i.e., they give end-to-end recommendations and ignore the rest of the decision-making process. Alternative support paradigms are rare, and it remains unclear how the few that do exist compare to recommendation-centric support. In this work, we aimed to empirically compare recommendation-centric support to an alternative paradigm, continuous support, in the context of diversions in aviation. We conducted a mixed-methods study with 32 professional pilots in a realistic setting. To ensure the quality of our study scenarios, we conducted a focus group with four additional pilots prior to the study. We found that continuous support can support pilots' decision-making in a forward direction, allowing them to think more beyond the limits of the system and make faster decisions when combined with recommendations, though the forward support can be disrupted. Participants' statements further suggest a shift in design goal away from providing recommendations, to supporting quick information gathering. Our results show ways to design more helpful and effective AI decision support that goes beyond end-to-end recommendations.
Abstract:Human-in-the-loop optimization utilizes human expertise to guide machine optimizers iteratively and search for an optimal solution in a solution space. While prior empirical studies mainly investigated novices, we analyzed the impact of the levels of expertise on the outcome quality and corresponding subjective satisfaction. We conducted a study (N=60) in text, photo, and 3D mesh optimization contexts. We found that novices can achieve an expert level of quality performance, but participants with higher expertise led to more optimization iteration with more explicit preference while keeping satisfaction low. In contrast, novices were more easily satisfied and terminated faster. Therefore, we identified that experts seek more diverse outcomes while the machine reaches optimal results, and the observed behavior can be used as a performance indicator for human-in-the-loop system designers to improve underlying models. We inform future research to be cautious about the impact of user expertise when designing human-in-the-loop systems.