Abstract:Aquaculture production -- the cultivation of aquatic plants and animals -- has grown rapidly since the 1990s, but sparse, self-reported and aggregate production data limits the effective understanding and monitoring of the industry's trends and potential risks. Building on a manual survey of aquaculture production from remote sensing imagery, we train a computer vision model to identify marine aquaculture cages from aerial and satellite imagery, and generate a spatially explicit dataset of finfish production locations in the French Mediterranean from 2000-2021 that includes 4,010 cages (69m2 average cage area). We demonstrate the value of our method as an easily adaptable, cost-effective approach that can improve the speed and reliability of aquaculture surveys, and enables downstream analyses relevant to researchers and regulators. We illustrate its use to compute independent estimates of production, and develop a flexible framework to quantify uncertainty in these estimates. Overall, our study presents an efficient, scalable and highly adaptable method for monitoring aquaculture production from remote sensing imagery.
Abstract:Static word embeddings are ubiquitous in computational social science applications and contribute to practical decision-making in a variety of fields including law and healthcare. However, assessing the statistical uncertainty in downstream conclusions drawn from word embedding statistics has remained challenging. When using only point estimates for embeddings, researchers have no streamlined way of assessing the degree to which their model selection criteria or scientific conclusions are subject to noise due to sparsity in the underlying data used to generate the embeddings. We introduce a method to obtain approximate, easy-to-use, and scalable reconstruction error variance estimates for GloVe (Pennington et al., 2014), one of the most widely used word embedding models, using an analytical approximation to a multivariate normal model. To demonstrate the value of embeddings with variance (GloVe-V), we illustrate how our approach enables principled hypothesis testing in core word embedding tasks, such as comparing the similarity between different word pairs in vector space, assessing the performance of different models, and analyzing the relative degree of ethnic or gender bias in a corpus using different word lists.