Abstract:Cervical cancer is a public health problem, where the treatment has a better chance of success if detected early. The analysis is a manual process which is subject to a human error, so this paper provides a way to analyze argyrophilic nucleolar organizer regions (AgNOR) stained slide using deep learning approaches. Also, this paper compares models for instance and semantic detection approaches. Our results show that the semantic segmentation using U-Net with ResNet-18 or ResNet-34 as the backbone have similar results, and the best model shows an IoU for nucleus, cluster, and satellites of 0.83, 0.92, and 0.99 respectively. For instance segmentation, the Mask R-CNN using ResNet-50 performs better in the visual inspection and has a 0.61 of the IoU metric. We conclude that the instance segmentation and semantic segmentation models can be used in combination to make a cascade model able to select a nucleus and subsequently segment the nucleus and its respective nucleolar organizer regions (NORs).
Abstract:Cytology is a low-cost and non-invasive diagnostic procedure employed to support the diagnosis of a broad range of pathologies. Computer Vision technologies, by automatically generating quantitative and objective descriptions of examinations' contents, can help minimize the chances of misdiagnoses and shorten the time required for analysis. To identify the state-of-art of computer vision techniques currently applied to cytology, we conducted a Systematic Literature Review. We analyzed papers published in the last 5 years. The initial search was executed in September 2020 and resulted in 431 articles. After applying the inclusion/exclusion criteria, 157 papers remained, which we analyzed to build a picture of the tendencies and problems present in this research area, highlighting the computer vision methods, staining techniques, evaluation metrics, and the availability of the used datasets and computer code. As a result, we identified that the most used methods in the analyzed works are deep learning-based (70 papers), while fewer works employ classic computer vision only (101 papers). The most recurrent metric used for classification and object detection was the accuracy (33 papers and 5 papers), while for segmentation it was the Dice Similarity Coefficient (38 papers). Regarding staining techniques, Papanicolaou was the most employed one (130 papers), followed by H&E (20 papers) and Feulgen (5 papers). Twelve of the datasets used in the papers are publicly available, with the DTU/Herlev dataset being the most used one. We conclude that there still is a lack of high-quality datasets for many types of stains and most of the works are not mature enough to be applied in a daily clinical diagnostic routine. We also identified a growing tendency towards adopting deep learning-based approaches as the methods of choice.