Abstract:We present an algorithmic framework generalizing quantum-inspired polylogarithmic-time algorithms on low-rank matrices. Our work follows the line of research started by Tang's breakthrough classical algorithm for recommendation systems [STOC'19]. The main result of this work is an algorithm for singular value transformation on low-rank inputs in the quantum-inspired regime, where singular value transformation is a framework proposed by Gily\'en et al. [STOC'19] to study various quantum speedups. Since singular value transformation encompasses a vast range of matrix arithmetic, this result, combined with simple sampling lemmas from previous work, suffices to generalize all results dequantizing quantum machine learning algorithms to the authors' knowledge. Via simple black-box applications of our singular value transformation framework, we recover the dequantization results on recommendation systems, principal component analysis, supervised clustering, low-rank matrix inversion, low-rank semidefinite programming, and support vector machines. We also give additional dequantizations results on low-rank Hamiltonian simulation and discriminant analysis.
Abstract:A fundamental problem in statistics and learning theory is to test properties of distributions. We show that quantum computers can solve such problems with significant speed-ups. In particular, we give fast quantum algorithms for testing closeness between unknown distributions, testing independence between two distributions, and estimating the Shannon / von Neumann entropy of distributions. The distributions can be either classical or quantum, however our quantum algorithms require coherent quantum access to a process preparing the samples. Our results build on the recent technique of quantum singular value transformation, combined with more standard tricks such as divide-and-conquer. The presented approach is a natural fit for distributional property testing both in the classical and the quantum case, demonstrating the first speed-ups for testing properties of density operators that can be accessed coherently rather than only via sampling; for classical distributions our algorithms significantly improve the precision dependence of some earlier results.