INPG
Abstract:Federated Learning has been introduced as a new machine learning paradigm enhancing the use of local devices. At a server level, FL regularly aggregates models learned locally on distributed clients to obtain a more general model. Current solutions rely on the availability of large amounts of stored data at the client side in order to fine-tune the models sent by the server. Such setting is not realistic in mobile pervasive computing where data storage must be kept low and data characteristic can change dramatically. To account for this variability, a solution is to use the data regularly collected by the client to progressively adapt the received model. But such naive approach exposes clients to the well-known problem of catastrophic forgetting. To address this problem, we have defined a Federated Continual Learning approach which is mainly based on distillation. Our approach allows a better use of resources, eliminating the need to retrain from scratch at the arrival of new data and reducing memory usage by limiting the amount of data to be stored. This proposal has been evaluated in the Human Activity Recognition (HAR) domain and has shown to effectively reduce the catastrophic forgetting effect.
Abstract:Federated Learning has been introduced as a new machine learning paradigm enhancing the use of local devices. At a server level, FL regularly aggregates models learned locally on distributed clients to obtain a more general model. In this way, no private data is sent over the network, and the communication cost is reduced. However, current solutions rely on the availability of large amounts of stored data at the client side in order to fine-tune the models sent by the server. Such setting is not realistic in mobile pervasive computing where data storage must be kept low and data characteristic (distribution) can change dramatically. To account for this variability, a solution is to use the data regularly collected by the client to progressively adapt the received model. But such naive approach exposes clients to the well-known problem of catastrophic forgetting. The purpose of this paper is to demonstrate this problem in the mobile human activity recognition context on smartphones.
Abstract:Federated Learning, a new machine learning paradigm enhancing the use of edge devices, is receiving a lot of attention in the pervasive community to support the development of smart services. Nevertheless, this approach still needs to be adapted to the specificity of the pervasive domain. In particular, issues related to continual learning need to be addressed. In this paper, we present a distillation-based approach dealing with catastrophic forgetting in federated learning scenario. Specifically, Human Activity Recognition tasks are used as a demonstration domain.