Abstract:Treatment selection in breast cancer is guided by molecular subtypes and clinical characteristics. Recurrence risk assessment plays a crucial role in personalizing treatment. Current methods, including genomic assays, have limited accuracy and clinical utility, leading to suboptimal decisions for many patients. We developed a test for breast cancer patient stratification based on digital pathology and clinical characteristics using novel AI methods. Specifically, we utilized a vision transformer-based pan-cancer foundation model trained with self-supervised learning to extract features from digitized H&E-stained slides. These features were integrated with clinical data to form a multi-modal AI test predicting cancer recurrence and death. The test was developed and evaluated using data from a total of 8,161 breast cancer patients across 15 cohorts originating from seven countries. Of these, 3,502 patients from five cohorts were used exclusively for evaluation, while the remaining patients were used for training. Our test accurately predicted our primary endpoint, disease-free interval, in the five external cohorts (C-index: 0.71 [0.68-0.75], HR: 3.63 [3.02-4.37, p<0.01]). In a direct comparison (N=858), the AI test was more accurate than Oncotype DX, the standard-of-care 21-gene assay, with a C-index of 0.67 [0.61-0.74] versus 0.61 [0.49-0.73], respectively. Additionally, the AI test added independent information to Oncotype DX in a multivariate analysis (HR: 3.11 [1.91-5.09, p<0.01)]). The test demonstrated robust accuracy across all major breast cancer subtypes, including TNBC (C-index: 0.71 [0.62-0.81], HR: 3.81 [2.35-6.17, p=0.02]), where no diagnostic tools are currently recommended by clinical guidelines. These results suggest that our AI test can improve accuracy, extend applicability to a wider range of patients, and enhance access to treatment selection tools.
Abstract:The lighting requirements are subjective and one light setting cannot work for all. However, there is little work on developing smart lighting algorithms that can adapt to user preferences. To address this gap, this paper uses fuzzy logic and reinforcement learning to develop an adaptive lighting algorithm. In particular, we develop a baseline fuzzy inference system (FIS) using the domain knowledge. We use the existing literature to create a FIS that generates lighting setting recommendations based on environmental conditions i.e. daily glare index, and user information including age, activity, and chronotype. Through a feedback mechanism, the user interacts with the algorithm, correcting the algorithm output to their preferences. We interpret these corrections as rewards to a Q-learning agent, which tunes the FIS parameters online to match the user preferences. We implement the algorithm in an aircraft cabin mockup and conduct an extensive user study to evaluate the effectiveness of the algorithm and understand its learning behavior. Our implementation results demonstrate that the developed algorithm possesses the capability to learn user preferences while successfully adapting to a wide range of environmental conditions and user characteristics. and can deal with a diverse spectrum of environmental conditions and user characteristics. This underscores its viability as a potent solution for intelligent light management, featuring advanced learning capabilities.