Abstract:We present an open-domain Question-Answering system that learns to answer questions based on successful past interactions. We follow a pattern-based approach to Answer-Extraction, where (lexico-syntactic) patterns that relate a question to its answer are automatically learned and used to answer future questions. Results show that our approach contributes to the system's best performance when it is conjugated with typical Answer-Extraction strategies. Moreover, it allows the system to learn with the answered questions and to rectify wrong or unsolved past questions.
Abstract:When developing a conversational agent, there is often an urgent need to have a prototype available in order to test the application with real users. A Wizard of Oz is a possibility, but sometimes the agent should be simply deployed in the environment where it will be used. Here, the agent should be able to capture as many interactions as possible and to understand how people react to failure. In this paper, we focus on the rapid development of a natural language understanding module by non experts. Our approach follows the learning paradigm and sees the process of understanding natural language as a classification problem. We test our module with a conversational agent that answers questions in the art domain. Moreover, we show how our approach can be used by a natural language interface to a cinema database.