Abstract:Understanding and respecting personal space preferences is essential for socially assistive robots designed for older adult users. This work introduces and evaluates a novel personalized context-aware method for modeling users' proxemics preferences during human-robot interactions. Using an interactive augmented reality interface, we collected a set of user-preferred distances from the robot and employed an active transfer learning approach to fine-tune a specialized deep learning model. We evaluated this approach through two user studies: 1) a convenience population study (N = 24) to validate the efficacy of the active transfer learning approach; and 2) a user study involving older adults (N = 15) to assess the system's usability. We compared the data collected with the augmented reality interface and with the physical robot to examine the relationship between proxemics preferences for a virtual robot versus a physically embodied robot. We found that fine-tuning significantly improved model performance: on average, the error in testing decreased by 26.97% after fine-tuning. The system was well-received by older adult participants, who provided valuable feedback and suggestions for future work.
Abstract:College students with ADHD respond positively to simple socially assistive robots (SARs) that monitor attention and provide non-verbal feedback, but studies have been done only in brief in-lab sessions. We present an initial design and evaluation of an in-dorm SAR study companion for college students with ADHD. This work represents the introductory stages of an ongoing user-centered, participatory design process. In a three-week within-subjects user study, university students (N=11) with self-reported symptoms of adult ADHD had a SAR study companion in their dorm room for two weeks and a computer-based system for one week. Toward developing SARs for long-term, in-dorm use, we focus on 1) evaluating the usability and desire for SAR study companions by college students with ADHD and 2) collecting participant feedback about the SAR design and functionality. Participants responded positively to the robot; after one week of regular use, 91% (10 of 11) chose to continue using the robot voluntarily in the second week.