Abstract:Introduction: The auditory brainstem response (ABR) is measured to find the brainstem-level peripheral auditory nerve system integrity in children having normal hearing. The Auditory Evoked Potential (AEP) is generated using acoustic stimuli. Interpreting these waves requires competence to avoid misdiagnosing hearing problems. Automating ABR test labeling with computer vision may reduce human error. Method: The ABR test results of 26 children aged 1 to 20 months with normal hearing in both ears were used. A new approach is suggested for automatically calculating the peaks of waves of different intensities (in decibels). The procedure entails acquiring wave images from an Audera device using the Color Thresholder method, segmenting each wave as a single wave image using the Image Region Analyzer application, converting all wave images into waves using Image Processing (IP) techniques, and finally calculating the latency of the peaks for each wave to be used by an audiologist for diagnosing the disease. Findings: Image processing techniques were able to detect 1, 3, and 5 waves in the diagnosis field with accuracy (0.82), (0.98), and (0.98), respectively, and its precision for waves 1, 3, and 5, were respectively (0.32), (0.97) and (0.87). This evaluation also worked well in the thresholding part and 82.7 % correctly detected the ABR waves. Conclusion: Our findings indicate that the audiology test battery suite can be made more accurate, quick, and error-free by using technology to automatically detect and label ABR waves.
Abstract:The assessment of the well-being of the peripheral auditory nerve system in individuals experiencing hearing impairment is conducted through auditory brainstem response (ABR) testing. Audiologists assess and document the results of the ABR test. They interpret the findings and assign labels to them using reference-based markers like peak latency, waveform morphology, amplitude, and other relevant factors. Inaccurate assessment of ABR tests may lead to incorrect judgments regarding the integrity of the auditory nerve system; therefore, proper Hearing Loss (HL) diagnosis and analysis are essential. To identify and assess ABR automation while decreasing the possibility of human error, machine learning methods, notably deep learning, may be an appropriate option. To address these issues, this study proposed deep-learning models using the transfer-learning (TL) approach to extract features from ABR testing and diagnose HL using support vector machines (SVM). Pre-trained convolutional neural network (CNN) architectures like AlexNet, DenseNet, GoogleNet, InceptionResNetV2, InceptionV3, MobileNetV2, NASNetMobile, ResNet18, ResNet50, ResNet101, ShuffleNet, and SqueezeNet are used to extract features from the collected ABR reported images dataset in the proposed model. It has been decided to use six measures accuracy, precision, recall, geometric mean (GM), standard deviation (SD), and area under the ROC curve to measure the effectiveness of the proposed model. According to experimental findings, the ShuffleNet and ResNet50 models' TL is effective for ABR to diagnose HL using an SVM classifier, with a high accuracy rate of 95% when using the 5-fold cross-validation method.