Abstract:The lack of a suitable tool for the analysis of conversational texts in the Persian language has made various analyses of these texts, including Sentiment Analysis, difficult. In this research, we tried to make the understanding of these texts easier for the machine by providing PSC, Persian Slang Converter, a tool for converting conversational texts into formal ones, and by using the most up-to-date and best deep learning methods along with the PSC, the sentiment learning of short Persian language texts for the machine in a better way. be made More than 10 million unlabeled texts from various social networks and movie subtitles (as Conversational texts) and about 10 million news texts (as formal texts) have been used for training unsupervised models and formal implementation of the tool. 60,000 texts from the comments of Instagram social network users with positive, negative, and neutral labels are considered supervised data for training the emotion classification model of short texts. Using the formal tool, 57% of the words of the corpus of conversation were converted. Finally, by using the formalizer, FastText model, and deep LSTM network, an accuracy of 81.91 was obtained on the test data.
Abstract:The cultural heritage buildings (CHB), which are part of mankind's history and identity, are in constant danger of damage or in extreme situations total destruction. That being said, it's of utmost importance to preserve them by identifying the existent, or presumptive, defects using novel methods so that renovation processes can be done in a timely manner and with higher accuracy. The main goal of this research is to use new deep learning (DL) methods in the process of preserving CHBs (situated in Iran); a goal that has been neglected especially in developing countries such as Iran, as these countries still preserve their CHBs using manual, and even archaic, methods that need direct human supervision. Having proven their effectiveness and performance when it comes to processing images, the convolutional neural networks (CNN) are a staple in computer vision (CV) literacy and this paper is not exempt. When lacking enough CHB images, training a CNN from scratch would be very difficult and prone to overfitting; that's why we opted to use a technique called transfer learning (TL) in which we used pre-trained ResNet, MobileNet, and Inception networks, for classification. Even more, the Grad-CAM was utilized to localize the defects to some extent. The final results were very favorable based on those of similar research. The final proposed model can pave the way for moving from manual to unmanned CHB conservation, hence an increase in accuracy and a decrease in human-induced errors.