University of Texas
Abstract:We study reinforcement learning in infinite-horizon average-reward settings with linear MDPs. Previous work addresses this problem by approximating the average-reward setting by discounted setting and employing a value iteration-based algorithm that uses clipping to constrain the span of the value function for improved statistical efficiency. However, the clipping procedure requires computing the minimum of the value function over the entire state space, which is prohibitive since the state space in linear MDP setting can be large or even infinite. In this paper, we introduce a value iteration method with efficient clipping operation that only requires computing the minimum of value functions over the set of states visited by the algorithm. Our algorithm enjoys the same regret bound as the previous work while being computationally efficient, with computational complexity that is independent of the size of the state space.
Abstract:Operator learning has emerged as a powerful tool in scientific computing for approximating mappings between infinite-dimensional function spaces. A primary application of operator learning is the development of surrogate models for the solution operators of partial differential equations (PDEs). These methods can also be used to develop black-box simulators to model system behavior from experimental data, even without a known mathematical model. In this article, we begin by formalizing operator learning as a function-to-function regression problem and review some recent developments in the field. We also discuss PDE-specific operator learning, outlining strategies for incorporating physical and mathematical constraints into architecture design and training processes. Finally, we end by highlighting key future directions such as active data collection and the development of rigorous uncertainty quantification frameworks.
Abstract:In the Learning to Defer (L2D) framework, a prediction model can either make a prediction or defer it to an expert, as determined by a rejector. Current L2D methods train the rejector to decide whether to reject the entire prediction, which is not desirable when the model predicts long sequences. We present an L2D setting for sequence outputs where the system can defer specific outputs of the whole model prediction to an expert in an effort to interleave the expert and machine throughout the prediction. We propose two types of model-based post-hoc rejectors for pre-trained predictors: a token-level rejector, which defers specific token predictions to experts with next token prediction capabilities, and a one-time rejector for experts without such abilities, which defers the remaining sequence from a specific point onward. In the experiments, we also empirically demonstrate that such granular deferrals achieve better cost-accuracy tradeoffs than whole deferrals on Traveling salesman solvers and News summarization models.
Abstract:Verifying the provenance of content is crucial to the function of many organizations, e.g., educational institutions, social media platforms, firms, etc. This problem is becoming increasingly difficult as text generated by Large Language Models (LLMs) becomes almost indistinguishable from human-generated content. In addition, many institutions utilize in-house LLMs and want to ensure that external, non-sanctioned LLMs do not produce content within the institution. In this paper, we answer the following question: Given a piece of text, can we identify whether it was produced by LLM $A$ or $B$ (where $B$ can be a human)? We model LLM-generated text as a sequential stochastic process with complete dependence on history and design zero-shot statistical tests to distinguish between (i) the text generated by two different sets of LLMs $A$ (in-house) and $B$ (non-sanctioned) and also (ii) LLM-generated and human-generated texts. We prove that the type I and type II errors for our tests decrease exponentially in the text length. In designing our tests, we derive concentration inequalities on the difference between log-perplexity and the average entropy of the string under $A$. Specifically, for a given string, we demonstrate that if the string is generated by $A$, the log-perplexity of the string under $A$ converges to the average entropy of the string under $A$, except with an exponentially small probability in string length. We also show that if $B$ generates the text, except with an exponentially small probability in string length, the log-perplexity of the string under $A$ converges to the average cross-entropy of $B$ and $A$. Lastly, we present preliminary experimental results to support our theoretical results. By enabling guaranteed (with high probability) finding of the origin of harmful LLM-generated text with arbitrary size, we can help fight misinformation.
Abstract:Bandit algorithms have garnered significant attention due to their practical applications in real-world scenarios. However, beyond simple settings such as multi-arm or linear bandits, optimal algorithms remain scarce. Notably, no optimal solution exists for pure exploration problems in the context of generalized linear model (GLM) bandits. In this paper, we narrow this gap and develop the first track-and-stop algorithm for general pure exploration problems under the logistic bandit called logistic track-and-stop (Log-TS). Log-TS is an efficient algorithm that asymptotically matches an approximation for the instance-specific lower bound of the expected sample complexity up to a logarithmic factor.
Abstract:We investigate active data collection strategies for operator learning when the target operator is linear and the input functions are drawn from a mean-zero stochastic process with continuous covariance kernels. With an active data collection strategy, we establish an error convergence rate in terms of the decay rate of the eigenvalues of the covariance kernel. Thus, with sufficiently rapid eigenvalue decay of the covariance kernels, arbitrarily fast error convergence rates can be achieved. This contrasts with the passive (i.i.d.) data collection strategies, where the convergence rate is never faster than $\sim n^{-1}$. In fact, for our setting, we establish a \emph{non-vanishing} lower bound for any passive data collection strategy, regardless of the eigenvalues decay rate of the covariance kernel. Overall, our results show the benefit of active over passive data collection strategies in operator learning.
Abstract:We study generation through the lens of statistical learning theory. First, we abstract and formalize the results of Gold [1967], Angluin [1979, 1980], and Kleinberg and Mullainathan [2024] for language identification/generation in the limit in terms of a binary hypothesis class defined over an abstract instance space. Then, we formalize a different paradigm of generation studied by Kleinberg and Mullainathan [2024], which we call ``uniform generation," and provide a characterization of which hypothesis classes are uniformly generatable. As is standard in statistical learning theory, our characterization is in terms of the finiteness of a new combinatorial dimension we call the Closure dimension. By doing so, we are able to compare generatability with predictability (captured via PAC and online learnability) and show that these two properties of hypothesis classes are \emph{incompatible} - there are classes that are generatable but not predictable and vice versa.
Abstract:We introduce a novel extension of the contextual bandit problem, where new sets of arms can be requested with stochastic time delays and associated costs. In this setting, the learner can select multiple arms from a decision set, with each selection taking one unit of time. The problem is framed as a special case of semi-Markov decision processes (SMDPs). The arm contexts, request times, and costs are assumed to follow an unknown distribution. We consider the regret of an online learning algorithm with respect to the optimal policy that achieves the maximum average reward. By leveraging the Bellman optimality equation, we design algorithms that can effectively select arms and determine the appropriate time to request new arms, thereby minimizing their regret. Under the realizability assumption, we analyze the proposed algorithms and demonstrate that their regret upper bounds align with established results in the contextual bandit literature. We validate the algorithms through experiments on simulated data and a movie recommendation dataset, showing that their performance is consistent with theoretical analyses.
Abstract:We investigate the problem of learning operators between function spaces, focusing on the linear layer of the Fourier Neural Operator. First, we identify three main errors that occur during the learning process: statistical error due to finite sample size, truncation error from finite rank approximation of the operator, and discretization error from handling functional data on a finite grid of domain points. Finally, we analyze a Discrete Fourier Transform (DFT) based least squares estimator, establishing both upper and lower bounds on the aforementioned errors.
Abstract:Sequential decision-making domains such as recommender systems, healthcare and education often have unobserved heterogeneity in the population that can be modeled using latent bandits $-$ a framework where an unobserved latent state determines the model for a trajectory. While the latent bandit framework is compelling, the extent of its generality is unclear. We first address this by establishing a de Finetti theorem for decision processes, and show that $\textit{every}$ exchangeable and coherent stateless decision process is a latent bandit. The latent bandit framework lends itself particularly well to online learning with offline datasets, a problem of growing interest in sequential decision-making. One can leverage offline latent bandit data to learn a complex model for each latent state, so that an agent can simply learn the latent state online to act optimally. We focus on a linear model for a latent bandit with $d_A$-dimensional actions, where the latent states lie in an unknown $d_K$-dimensional subspace for $d_K \ll d_A$. We present SOLD, a novel principled method to learn this subspace from short offline trajectories with guarantees. We then provide two methods to leverage this subspace online: LOCAL-UCB and ProBALL-UCB. We demonstrate that LOCAL-UCB enjoys $\tilde O(\min(d_A\sqrt{T}, d_K\sqrt{T}(1+\sqrt{d_AT/d_KN})))$ regret guarantees, where the effective dimension is lower when the size $N$ of the offline dataset is larger. ProBALL-UCB enjoys a slightly weaker guarantee, but is more practical and computationally efficient. Finally, we establish the efficacy of our methods using experiments on both synthetic data and real-life movie recommendation data from MovieLens.