Abstract:Quantum Machine Learning (QML) is a red-hot field that brings novel discoveries and exciting opportunities to resolve, speed up, or refine the analysis of a wide range of computational problems. In the realm of biomedical research and personalized medicine, the significance of multi-omics integration lies in its ability to provide a thorough and holistic comprehension of complex biological systems. This technology links fundamental research to clinical practice. The insights gained from integrated omics data can be translated into clinical tools for diagnosis, prognosis, and treatment planning. The fusion of quantum computing and machine learning holds promise for unraveling complex patterns within multi-omics datasets, providing unprecedented insights into the molecular landscape of lung cancer. Due to the heterogeneity, complexity, and high dimensionality of multi-omic cancer data, characterized by the vast number of features (such as gene expression, micro-RNA, and DNA methylation) relative to the limited number of lung cancer patient samples, our prime motivation for this paper is the integration of multi-omic data, unique feature selection, and diagnostic classification of lung subtypes: lung squamous cell carcinoma (LUSC-I) and lung adenocarcinoma (LUAD-II) using quantum machine learning. We developed a method for finding the best differentiating features between LUAD and LUSC datasets, which has the potential for biomarker discovery.
Abstract:Healthcare industries frequently handle sensitive and proprietary data, and due to strict privacy regulations, they are often reluctant to share data directly. In today's context, Federated Learning (FL) stands out as a crucial remedy, facilitating the rapid advancement of distributed machine learning while effectively managing critical concerns regarding data privacy and governance. The fusion of federated learning and quantum computing represents a groundbreaking interdisciplinary approach with immense potential to revolutionize various industries, from healthcare to finance. In this work, we proposed a federated learning framework based on quantum tensor networks, which leverages the principles of many-body quantum physics. Currently, there are no known classical tensor networks implemented in federated settings. Furthermore, we investigated the effectiveness and feasibility of the proposed framework by conducting a differential privacy analysis to ensure the security of sensitive data across healthcare institutions. Experiments on popular medical image datasets show that the federated quantum tensor network model achieved a mean receiver-operator characteristic area under the curve (ROC-AUC) between 0.91-0.98. Experimental results demonstrate that the quantum federated global model, consisting of highly entangled tensor network structures, showed better generalization and robustness and achieved higher testing accuracy, surpassing the performance of locally trained clients under unbalanced data distributions among healthcare institutions.
Abstract:In quantum computing, the variational quantum algorithms (VQAs) are well suited for finding optimal combinations of things in specific applications ranging from chemistry all the way to finance. The training of VQAs with gradient descent optimization algorithm has shown a good convergence. At an early stage, the simulation of variational quantum circuits on noisy intermediate-scale quantum (NISQ) devices suffers from noisy outputs. Just like classical deep learning, it also suffers from vanishing gradient problems. It is a realistic goal to study the topology of loss landscape, to visualize the curvature information and trainability of these circuits in the existence of vanishing gradients. In this paper, we calculated the Hessian and visualized the loss landscape of variational quantum classifiers at different points in parameter space. The curvature information of variational quantum classifiers (VQC) is interpreted and the loss function's convergence is shown. It helps us better understand the behavior of variational quantum circuits to tackle optimization problems efficiently. We investigated the variational quantum classifiers via Hessian on quantum computers, started with a simple 4-bit parity problem to gain insight into the practical behavior of Hessian, then thoroughly analyzed the behavior of Hessian's eigenvalues on training the variational quantum classifier for the Diabetes dataset.
Abstract:Recently, the use of mathematical methods and computer science applications have got significant response among biochemists and biologists to modeling the biological systems. The computational and mathematical methods have enormous potential for modeling the deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) structures. The modeling of DNA and RNA secondary structures using automata theory had a significant impact in the fields of computer science. It is a natural goal to model the RNA secondary biomolecular structures using quantum computational models. Two-way quantum finite automata with classical states are more dominant than two-way probabilistic finite automata in language recognition. The main objective of this paper is on using two-way quantum finite automata with classical states to simulate, model and analyze the ribonucleic acid (RNA) sequences.
Abstract:Motivated by particle swarm optimization (PSO) and quantum computing theory, we have presented a quantum variant of PSO (QPSO) mutated with Cauchy operator and natural selection mechanism (QPSO-CD) from evolutionary computations. The performance of proposed hybrid quantum-behaved particle swarm optimization with Cauchy distribution (QPSO-CD) is investigated and compared with its counterparts based on a set of benchmark problems. Moreover, QPSO-CD is employed in well-studied constrained engineering problems to investigate its applicability. Further, the correctness and time complexity of QPSO-CD are analysed and compared with the classical PSO. It has been proven that QPSO-CD handles such real-life problems efficiently and can attain superior solutions in most of the problems. The experimental results showed that QPSO associated with Cauchy distribution and natural selection strategy outperforms other variants in the context of stability and convergence.
Abstract:In recent years, interest in expressing the success of neural networks to the quantum computing has increased significantly. Tensor network theory has become increasingly popular and widely used to simulate strongly entangled correlated systems. Matrix product state (MPS) is the well-designed class of tensor network states, which plays an important role in processing of quantum information. In this paper, we have shown that matrix product state as one-dimensional array of tensors can be used to classify classical and quantum data. We have performed binary classification of classical machine learning dataset Iris encoded in a quantum state. Further, we have investigated the performance by considering different parameters on the ibmqx4 quantum computer and proved that MPS circuits can be used to attain better accuracy. Further, the learning ability of MPS quantum classifier is tested to classify evapotranspiration ($ET_{o}$) for Patiala meteorological station located in Northern Punjab (India), using three years of historical dataset (Agri). Furthermore, we have used different performance metrics of classification to measure its capability. Finally, the results are plotted and degree of correspondence among values of each sample is shown.