Abstract:The limited modulation bandwidth of the light emitting diodes (LEDs) presents a challenge in the development of practical high-data-rate visible light communication (VLC) systems. In this paper, a novel adaptive coded probabilistic shaping (PS)-based nonorthogonal multiple access (NOMA) scheme is proposed to improve spectral efficiency (SE) of VLC systems in multiuser uplink communication scenarios. The proposed scheme adapts its rate to the optical signal-to-noise ratio (OSNR) by utilizing non-uniformly distributed discrete constellation symbols and low complexity channel encoder. Furthermore, an alternate optimization algorithm is proposed to determine the optimal channel coding rate, constellation spacing, and probability mass function (PMF) of each user. The extensive numerical results show that the proposed PS-based NOMA scheme closely approaches the capacity of NOMA with fine granularity. Presented results demonstrate the effectiveness of our scheme in improving the SE of VLC systems in multiuser scenarios. For instance, our scheme exhibits substantial SE gains over existing schemes, namely, the pairwise coded modulation (PCM), geometric shaping (GS), and uniform-distribution schemes. These findings highlight the potential of our approach to significantly enhance VLC systems.
Abstract:Conventional wireless techniques are becoming inadequate for beyond fifth-generation (5G) networks due to latency and bandwidth considerations. To improve the error performance and throughput of wireless communication systems, we propose physical layer network coding (PNC) in an intelligent reflecting surface (IRS)-assisted environment. We consider an IRS-aided butterfly network, where we propose an algorithm for obtaining the optimal IRS phases. Also, analytic expressions for the bit error rate (BER) are derived. The numerical results demonstrate that the proposed scheme significantly improves the BER performance. For instance, the BER at the relay in the presence of a 32-element IRS is three orders of magnitudes less than that without an IRS.