Abstract:Ontology learning in complex domains, such as life sciences, poses significant challenges for current Large Language Models (LLMs). Existing LLMs struggle to generate ontologies with multiple hierarchical levels, rich interconnections, and comprehensive class coverage due to constraints on the number of tokens they can generate and inadequate domain adaptation. To address these issues, we extend the NeOn-GPT pipeline for ontology learning using LLMs with advanced prompt engineering techniques and ontology reuse to enhance the generated ontologies' domain-specific reasoning and structural depth. Our work evaluates the capabilities of LLMs in ontology learning in the context of highly specialized and complex domains such as life science domains. To assess the logical consistency, completeness, and scalability of the generated ontologies, we use the AquaDiva ontology developed and used in the collaborative research center AquaDiva as a case study. Our evaluation shows the viability of LLMs for ontology learning in specialized domains, providing solutions to longstanding limitations in model performance and scalability.