Abstract:Recent work on background subtraction has shown developments on two major fronts. In one, there has been increasing sophistication of probabilistic models, from mixtures of Gaussians at each pixel [7], to kernel density estimates at each pixel [1], and more recently to joint domainrange density estimates that incorporate spatial information [6]. Another line of work has shown the benefits of increasingly complex feature representations, including the use of texture information, local binary patterns, and recently scale-invariant local ternary patterns [4]. In this work, we use joint domain-range based estimates for background and foreground scores and show that dynamically choosing kernel variances in our kernel estimates at each individual pixel can significantly improve results. We give a heuristic method for selectively applying the adaptive kernel calculations which is nearly as accurate as the full procedure but runs much faster. We combine these modeling improvements with recently developed complex features [4] and show significant improvements on a standard backgrounding benchmark.
Abstract:In its early implementations, background modeling was a process of building a model for the background of a video with a stationary camera, and identifying pixels that did not conform well to this model. The pixels that were not well-described by the background model were assumed to be moving objects. Many systems today maintain models for the foreground as well as the background, and these models compete to explain the pixels in a video. In this paper, we argue that the logical endpoint of this evolution is to simply use Bayes' rule to classify pixels. In particular, it is essential to have a background likelihood, a foreground likelihood, and a prior at each pixel. A simple application of Bayes' rule then gives a posterior probability over the label. The only remaining question is the quality of the component models: the background likelihood, the foreground likelihood, and the prior. We describe a model for the likelihoods that is built by using not only the past observations at a given pixel location, but by also including observations in a spatial neighborhood around the location. This enables us to model the influence between neighboring pixels and is an improvement over earlier pixelwise models that do not allow for such influence. Although similar in spirit to the joint domain-range model, we show that our model overcomes certain deficiencies in that model. We use a spatially dependent prior for the background and foreground. The background and foreground labels from the previous frame, after spatial smoothing to account for movement of objects,are used to build the prior for the current frame.
Abstract:In moving camera videos, motion segmentation is commonly performed using the image plane motion of pixels, or optical flow. However, objects that are at different depths from the camera can exhibit different optical flows even if they share the same real-world motion. This can cause a depth-dependent segmentation of the scene. Our goal is to develop a segmentation algorithm that clusters pixels that have similar real-world motion irrespective of their depth in the scene. Our solution uses optical flow orientations instead of the complete vectors and exploits the well-known property that under camera translation, optical flow orientations are independent of object depth. We introduce a probabilistic model that automatically estimates the number of observed independent motions and results in a labeling that is consistent with real-world motion in the scene. The result of our system is that static objects are correctly identified as one segment, even if they are at different depths. Color features and information from previous frames in the video sequence are used to correct occasional errors due to the orientation-based segmentation. We present results on more than thirty videos from different benchmarks. The system is particularly robust on complex background scenes containing objects at significantly different depths