Abstract:This research addresses the question, which characteristics a cognitive architecture must have to leverage the benefits of natural language in Co-Constructive Task Learning (CCTL). To provide context, we first discuss Interactive Task Learning (ITL), the mechanisms of the human memory system, and the significance of natural language and multi-modality. Next, we examine the current state of cognitive architectures, analyzing their capabilities to inform a concept of CCTL grounded in multiple sources. We then integrate insights from various research domains to develop a unified framework. Finally, we conclude by identifying the remaining challenges and requirements necessary to achieve CCTL in Human-Robot Interaction (HRI).
Abstract:The more AI-assisted decisions affect people's lives, the more important the fairness of such decisions becomes. In this chapter, we provide an introduction to research on fairness in machine learning. We explain the main fairness definitions and strategies for achieving fairness using concrete examples and place fairness research in the European context. Our contribution is aimed at an interdisciplinary audience and therefore avoids mathematical formulation but emphasizes visualizations and examples. -- Je mehr KI-gest\"utzte Entscheidungen das Leben von Menschen betreffen, desto wichtiger ist die Fairness solcher Entscheidungen. In diesem Kapitel geben wir eine Einf\"uhrung in die Forschung zu Fairness im maschinellen Lernen. Wir erkl\"aren die wesentlichen Fairness-Definitionen und Strategien zur Erreichung von Fairness anhand konkreter Beispiele und ordnen die Fairness-Forschung in den europ\"aischen Kontext ein. Unser Beitrag richtet sich dabei an ein interdisziplin\"ares Publikum und verzichtet daher auf die mathematische Formulierung sondern betont Visualisierungen und Beispiele.