Abstract:The growing interest in brain-inspired computational models arises from the remarkable problem-solving efficiency of the human brain. Action recognition, a complex task in computational neuroscience, has received significant attention due to both its intricate nature and the brain's exceptional performance in this area. Nevertheless, current solutions for action recognition either exhibit limitations in effectively addressing the problem or lack the necessary biological plausibility. Deep neural networks, for instance, demonstrate acceptable performance but deviate from biological evidence, thereby restricting their suitability for brain-inspired computational studies. On the other hand, the majority of brain-inspired models proposed for action recognition exhibit significantly lower effectiveness compared to deep models and fail to achieve human-level performance. This deficiency can be attributed to their disregard for the underlying mechanisms of the brain. In this article, we present an effective brain-inspired computational model for action recognition. We equip our model with novel biologically plausible mechanisms for spiking neural networks that are crucial for learning spatio-temporal patterns. The key idea behind these new mechanisms is to bridge the gap between the brain's capabilities and action recognition tasks by integrating key biological principles into our computational framework. Furthermore, we evaluate the performance of our model against other models using a benchmark dataset for action recognition, DVS-128 Gesture. The results show that our model outperforms previous biologically plausible models and competes with deep supervised models.
Abstract:The plasticity of the conduction delay between neurons plays a fundamental role in learning. However, the exact underlying mechanisms in the brain for this modulation is still an open problem. Understanding the precise adjustment of synaptic delays could help us in developing effective brain-inspired computational models in providing aligned insights with the experimental evidence. In this paper, we propose an unsupervised biologically plausible learning rule for adjusting the synaptic delays in spiking neural networks. Then, we provided some mathematical proofs to show that our learning rule gives a neuron the ability to learn repeating spatio-temporal patterns. Furthermore, the experimental results of applying an STDP-based spiking neural network equipped with our proposed delay learning rule on Random Dot Kinematogram indicate the efficacy of the proposed delay learning rule in extracting temporal features.