Abstract:Infrared small target detection (IRSTD) is a challenging task in computer vision. During the last two decades, researchers' efforts are devoted to improving detection ability of IRSTDs. Despite the huge improvement in designing new algorithms, lack of extensive investigation of the evaluation metrics are evident. Therefore, in this paper, a systematic approach is utilized to: First, investigate the evaluation ability of current metrics; Second, propose new evaluation metrics to address shortcoming of common metrics. To this end, after carefully reviewing the problem, the required conditions to have a successful detection are analyzed. Then, the shortcomings of current evaluation metrics which include pre-thresholding as well as post-thresholding metrics are determined. Based on the requirements of real-world systems, new metrics are proposed. Finally, the proposed metrics are used to compare and evaluate four well-known small infrared target detection algorithms. The results show that new metrics are consistent with qualitative results.
Abstract:This paper proposes a fast and accurate surface normal estimation method which can be directly used on depth maps (organized point clouds). The surface normal estimation process is formulated as a closed-form expression. In order to reduce the effect of measurement noise, the averaging operation is utilized in multi-direction manner. The multi-direction normal estimation process is reformulated in the next step to be implemented efficiently. Finally, a simple yet effective method is proposed to remove erroneous normal estimation at depth discontinuities. The proposed method is compared to well-known surface normal estimation algorithms. The results show that the proposed algorithm not only outperforms the baseline algorithms in term of accuracy, but also is fast enough to be used in real-time applications.