Abstract:It is prevalent in contemporary AI and robotics to separately postulate a brain modeled by neural networks and employ it to learn intelligent and adaptive behavior. While this method has worked very well for many types of tasks, it isn't the only type of intelligence that exists in nature. In this work, we study the ways in which intelligent behavior can be created without a separate and explicit brain for robot control, but rather solely as a result of the computation occurring within the physical body of a robot. Specifically, we show that adaptive and complex behavior can be created in voxel-based virtual soft robots by using simple reactive materials that actively change the shape of the robot, and thus its behavior, under different environmental cues. We demonstrate a proof of concept for the idea of closed-loop morphological computation, and show that in our implementation, it enables behavior mimicking logic gates, enabling us to demonstrate how such behaviors may be combined to build up more complex collective behaviors.
Abstract:Finding controllers that perform well across multiple morphologies is an important milestone for large-scale robotics, in line with recent advances via foundation models in other areas of machine learning. However, the challenges of learning a single controller to control multiple morphologies make the `one robot one task' paradigm dominant in the field. To alleviate these challenges, we present a pipeline that: (1) leverages Quality Diversity algorithms like MAP-Elites to create a dataset of many single-task/single-morphology teacher controllers, then (2) distills those diverse controllers into a single multi-morphology controller that performs well across many different body plans by mimicking the sensory-action patterns of the teacher controllers via supervised learning. The distilled controller scales well with the number of teachers/morphologies and shows emergent properties. It generalizes to unseen morphologies in a zero-shot manner, providing robustness to morphological perturbations and instant damage recovery. Lastly, the distilled controller is also independent of the teacher controllers -- we can distill the teacher's knowledge into any controller model, making our approach synergistic with architectural improvements and existing training algorithms for teacher controllers.
Abstract:Evolving virtual creatures is a field with a rich history and recently it has been getting more attention, especially in the soft robotics domain. The compliance of soft materials endows soft robots with complex behavior, but it also makes their design process unintuitive and in need of automated design. Despite the great interest, evolved virtual soft robots lack the complexity, and co-optimization of morphology and control remains a challenging problem. Prior work identifies and investigates a major issue with the co-optimization process -- fragile co-adaptation of brain and body resulting in premature convergence of morphology. In this work, we expand the investigation of this phenomenon by comparing learnable controllers with proprioceptive observations and fixed controllers without any observations, whereas in the latter case, we only have the optimization of the morphology. Our experiments in two morphology spaces and two environments that vary in complexity show, concrete examples of the existence of high-performing regions in the morphology space that are not able to be discovered during the co-optimization of the morphology and control, yet exist and are easily findable when optimizing morphologies alone. Thus this work clearly demonstrates and characterizes the challenges of optimizing morphology during co-optimization. Based on these results, we propose a new body-centric framework to think about the co-optimization problem which helps us understand the issue from a search perspective. We hope the insights we share with this work attract more attention to the problem and help us to enable efficient brain-body co-optimization.
Abstract:Soft robotics is a rapidly growing area of robotics research that would benefit greatly from design automation, given the challenges of manually engineering complex, compliant, and generally non-intuitive robot body plans and behaviors. It has been suggested that a major hurdle currently limiting soft robot brain-body co-optimization is the fragile specialization between a robot's controller and the particular body plan it controls, resulting in premature convergence. Here we posit that modular controllers are more robust to changes to a robot's body plan. We demonstrate a decreased reduction in locomotion performance after morphological mutations to soft robots with modular controllers, relative to those with similar global controllers - leading to fitter offspring. Moreover, we show that the increased transferability of modular controllers to similar body plans enables more effective brain-body co-optimization of soft robots, resulting in an increased rate of positive morphological mutations and higher overall performance of evolved robots. We hope that this work helps provide specific methods to improve soft robot design automation in this particular setting, while also providing evidence to support our understanding of the challenges of brain-body co-optimization more generally.
Abstract:Existing multi-label frameworks only exploit the information deduced from the bipartition of the labels into a positive and negative set. Therefore, they do not benefit from the ranking order between positive labels, which is the concept we introduce in this paper. We propose a novel multi-label ranking method: GaussianMLR, which aims to learn implicit class significance values that determine the positive label ranks instead of treating them as of equal importance, by following an approach that unifies ranking and classification tasks associated with multi-label ranking. Due to the scarcity of public datasets, we introduce eight synthetic datasets generated under varying importance factors to provide an enriched and controllable experimental environment for this study. On both real-world and synthetic datasets, we carry out extensive comparisons with relevant baselines and evaluate the performance on both of the two sub-tasks. We show that our method is able to accurately learn a representation of the incorporated positive rank order, which is not only consistent with the ground truth but also proportional to the underlying information. We strengthen our claims empirically by conducting comprehensive experimental studies. Code is available at https://github.com/MrGranddy/GaussianMLR.
Abstract:Multi-label ranking maps instances to a ranked set of predicted labels from multiple possible classes. The ranking approach for multi-label learning problems received attention for its success in multi-label classification, with one of the well-known approaches being pairwise label ranking. However, most existing methods assume that only partial information about the preference relation is known, which is inferred from the partition of labels into a positive and negative set, then treat labels with equal importance. In this paper, we focus on the unique challenge of ranking when the order of the true label set is provided. We propose a novel dedicated loss function to optimize models by incorporating penalties for incorrectly ranked pairs, and make use of the ranking information present in the input. Our method achieves the best reported performance measures on both synthetic and real world ranked datasets and shows improvements on overall ranking of labels. Our experimental results demonstrate that our approach is generalizable to a variety of multi-label classification and ranking tasks, while revealing a calibration towards a certain ranking ordering.
Abstract:This study integrates artificial intelligence and computational design tools to extract information from architectural heritage. Photogrammetry-based point cloud models of brick walls from the Anatolian Seljuk period are analysed in terms of the interrelated units of construction, simultaneously considering both the inherent symmetries and irregularities. The real-world data is used as input for acquiring the stochastic parameters of spatial relations and a set of parametric shape rules to recreate designs of existing and hypothetical brick walls within the style. The motivation is to be able to generate large data sets for machine learning of the style and to devise procedures for robotic production of such designs with repetitive units.
Abstract:We review solutions to the problem of depth estimation, arguably the most important subtask in scene understanding. We focus on the single image depth estimation problem. Due to its properties, the single image depth estimation problem is currently best tackled with machine learning methods, most successfully with convolutional neural networks. We provide an overview of the field by examining key works. We examine non-deep learning approaches that mostly predate deep learning and utilize hand-crafted features and assumptions, and more recent works that mostly use deep learning techniques. The single image depth estimation problem is tackled first in a supervised fashion with absolute or relative depth information acquired from human or sensor-labeled data, or in an unsupervised way using unlabelled stereo images or video datasets. We also study multitask approaches that combine the depth estimation problem with related tasks such as semantic segmentation and surface normal estimation. Finally, we discuss investigations into the mechanisms, principles, and failure cases of contemporary solutions.
Abstract:Learning new representations of 3D point clouds is an active research area in 3D vision, as the order-invariant point cloud structure still presents challenges to the design of neural network architectures. Recent works explored learning either global or local features or both for point clouds, however none of the earlier methods focused on capturing contextual shape information by analysing local orientation distribution of points. In this paper, we leverage on point orientation distributions around a point in order to obtain an expressive local neighborhood representation for point clouds. We achieve this by dividing the spherical neighborhood of a given point into predefined cone volumes, and statistics inside each volume are used as point features. In this way, a local patch can be represented by not only the selected point's nearest neighbors, but also considering a point density distribution defined along multiple orientations around the point. We are then able to construct an orientation distribution function (ODF) neural network that involves an ODFBlock which relies on mlp (multi-layer perceptron) layers. The new ODFNet model achieves state-of the-art accuracy for object classification on ModelNet40 and ScanObjectNN datasets, and segmentation on ShapeNet S3DIS datasets.
Abstract:We propose a new approach for the problem of relative depth estimation from a single image. Instead of directly regressing over depth scores, we formulate the problem as estimation of a probability distribution over depth and aim to learn the parameters of the distributions which maximize the likelihood of the given data. To train our model, we propose a new ranking loss, Distributional Loss, which tries to increase the probability of farther pixel's depth being greater than the closer pixel's depth. Our proposed approach allows our model to output confidence in its estimation in the form of standard deviation of the distribution. We achieve state of the art results against a number of baselines while providing confidence in our estimations. Our analysis show that estimated confidence is actually a good indicator of accuracy. We investigate the usage of confidence information in a downstream task of metric depth estimation, to increase its performance.