Abstract:Geospatial Foundation Models (GFMs) have emerged as powerful tools for extracting representations from Earth observation data, but their evaluation remains inconsistent and narrow. Existing works often evaluate on suboptimal downstream datasets and tasks, that are often too easy or too narrow, limiting the usefulness of the evaluations to assess the real-world applicability of GFMs. Additionally, there is a distinct lack of diversity in current evaluation protocols, which fail to account for the multiplicity of image resolutions, sensor types, and temporalities, which further complicates the assessment of GFM performance. In particular, most existing benchmarks are geographically biased towards North America and Europe, questioning the global applicability of GFMs. To overcome these challenges, we introduce PANGAEA, a standardized evaluation protocol that covers a diverse set of datasets, tasks, resolutions, sensor modalities, and temporalities. It establishes a robust and widely applicable benchmark for GFMs. We evaluate the most popular GFMs openly available on this benchmark and analyze their performance across several domains. In particular, we compare these models to supervised baselines (e.g. UNet and vanilla ViT), and assess their effectiveness when faced with limited labeled data. Our findings highlight the limitations of GFMs, under different scenarios, showing that they do not consistently outperform supervised models. PANGAEA is designed to be highly extensible, allowing for the seamless inclusion of new datasets, models, and tasks in future research. By releasing the evaluation code and benchmark, we aim to enable other researchers to replicate our experiments and build upon our work, fostering a more principled evaluation protocol for large pre-trained geospatial models. The code is available at https://github.com/VMarsocci/pangaea-bench.
Abstract:Accurate estimation of Network Performance is crucial for several tasks in telecom networks. Telecom networks regularly serve a vast number of radio nodes. Each radio node provides services to end-users in the associated coverage areas. The task of predicting Network Performance for telecom networks necessitates considering complex spatio-temporal interactions and incorporating geospatial information where the radio nodes are deployed. Instead of relying on historical data alone, our approach augments network historical performance datasets with satellite imagery data. Our comprehensive experiments, using real-world data collected from multiple different regions of an operational network, show that the model is robust and can generalize across different scenarios. The results indicate that the model, utilizing satellite imagery, performs very well across the tested regions. Additionally, the model demonstrates a robust approach to the cold-start problem, offering a promising alternative for initial performance estimation in newly deployed sites.