Abstract:In this paper, we investigate a model relevant to semantics-aware goal-oriented communications, and we propose a new metric that incorporates the utilization of information in addition to its timelines. Specifically, we consider the transmission of observations from an external process to a battery-powered receiver through status updates. These updates inform the receiver about the process status and enable actuation if sufficient energy is available to achieve a goal. We focus on a wireless power transfer (WPT) model, where the receiver receives energy from a dedicated power transmitter and occasionally from the data transmitter when they share a common channel. We analyze the Age of Information (AoI) and propose a new metric, the \textit{Age of Actuation (AoA), which is relevant when the receiver utilizes the status updates to perform actions in a timely manner}. We provide analytical characterizations of the average AoA and the violation probability of the AoA, demonstrating that AoA generalizes AoI. Moreover, we introduce and analytically characterize the \textit{Probability of Missing Actuation (PoMA)}; this metric becomes relevant also \textit{to quantify the incurred cost of a missed action}. We formulate unconstrained and constrained optimization problems for all the metrics and present numerical evaluations of our analytical results. This proposed set of metrics goes beyond the traditional timeliness metrics since the synergy of different flows is now considered.
Abstract:In this paper, a new deep-learning architecture for solving the non-linear Falkner-Skan equation is proposed. Using Legendre and Chebyshev neural blocks, this approach shows how orthogonal polynomials can be used in neural networks to increase the approximation capability of artificial neural networks. In addition, utilizing the mathematical properties of these functions, we overcome the computational complexity of the backpropagation algorithm by using the operational matrices of the derivative. The efficiency of the proposed method is carried out by simulating various configurations of the Falkner-Skan equation.