Abstract:The sparse identification of nonlinear dynamical systems (SINDy) is a data-driven technique employed for uncovering and representing the fundamental dynamics of intricate systems based on observational data. However, a primary obstacle in the discovery of models for nonlinear partial differential equations (PDEs) lies in addressing the challenges posed by the curse of dimensionality and large datasets. Consequently, the strategic selection of the most informative samples within a given dataset plays a crucial role in reducing computational costs and enhancing the effectiveness of SINDy-based algorithms. To this aim, we employ a greedy sampling approach to the snapshot matrix of a PDE to obtain its valuable samples, which are suitable to train a deep neural network (DNN) in a SINDy framework. SINDy based algorithms often consist of a data collection unit, constructing a dictionary of basis functions, computing the time derivative, and solving a sparse identification problem which ends to regularised least squares minimization. In this paper, we extend the results of a SINDy based deep learning model discovery (DeePyMoD) approach by integrating greedy sampling technique in its data collection unit and new sparsity promoting algorithms in the least squares minimization unit. In this regard we introduce the greedy sampling neural network in sparse identification of nonlinear partial differential equations (GN-SINDy) which blends a greedy sampling method, the DNN, and the SINDy algorithm. In the implementation phase, to show the effectiveness of GN-SINDy, we compare its results with DeePyMoD by using a Python package that is prepared for this purpose on numerous PDE discovery
Abstract:The discovery of governing equations from data has been an active field of research for decades. One widely used methodology for this purpose is sparse regression for nonlinear dynamics, known as SINDy. Despite several attempts, noisy and scarce data still pose a severe challenge to the success of the SINDy approach. In this work, we discuss a robust method to discover nonlinear governing equations from noisy and scarce data. To do this, we make use of neural networks to learn an implicit representation based on measurement data so that not only it produces the output in the vicinity of the measurements but also the time-evolution of output can be described by a dynamical system. Additionally, we learn such a dynamic system in the spirit of the SINDy framework. Leveraging the implicit representation using neural networks, we obtain the derivative information -- required for SINDy -- using an automatic differentiation tool. To enhance the robustness of our methodology, we further incorporate an integral condition on the output of the implicit networks. Furthermore, we extend our methodology to handle data collected from multiple initial conditions. We demonstrate the efficiency of the proposed methodology to discover governing equations under noisy and scarce data regimes by means of several examples and compare its performance with existing methods.