Abstract:Federated Learning (FL) has emerged as a powerful paradigm for decentralized machine learning, enabling collaborative model training across diverse clients without sharing raw data. However, traditional FL approaches often face limitations in scalability and efficiency due to their reliance on synchronous client updates, which can result in significant delays and increased communication overhead, particularly in heterogeneous and dynamic environments. To address these challenges in this paper, we propose an Asynchronous Federated Learning (AFL) algorithm, which allows clients to update the global model independently and asynchronously. Our key contributions include a comprehensive convergence analysis of AFL in the presence of client delays and model staleness. By leveraging martingale difference sequence theory and variance bounds, we ensure robust convergence despite asynchronous updates. Assuming strongly convex local objective functions, we establish bounds on gradient variance under random client sampling and derive a recursion formula quantifying the impact of client delays on convergence. Furthermore, we demonstrate the practical applicability of AFL by training a decentralized Long Short-Term Memory (LSTM)-based deep learning model on the CMIP6 climate dataset, effectively handling non-IID and geographically distributed data. The proposed AFL algorithm addresses key limitations of traditional FL methods, such as inefficiency due to global synchronization and susceptibility to client drift. It enhances scalability, robustness, and efficiency in real-world settings with heterogeneous client populations and dynamic network conditions. Our results underscore the potential of AFL to drive advancements in distributed learning systems, particularly for large-scale, privacy-preserving applications in resource-constrained environments.
Abstract:Wind power forecasting plays a critical role in modern energy systems, facilitating the integration of renewable energy sources into the power grid. Accurate prediction of wind energy output is essential for managing the inherent intermittency of wind power, optimizing energy dispatch, and ensuring grid stability. This paper proposes the use of Deep Neural Network (DNN)-based predictive models that leverage climate datasets, including wind speed, atmospheric pressure, temperature, and other meteorological variables, to improve the accuracy of wind power simulations. In particular, we focus on the Coupled Model Intercomparison Project (CMIP) datasets, which provide climate projections, as inputs for training the DNN models. These models aim to capture the complex nonlinear relationships between the CMIP-based climate data and actual wind power generation at wind farms located in Germany. Our study compares various DNN architectures, specifically Multilayer Perceptron (MLP), Long Short-Term Memory (LSTM) networks, and Transformer-enhanced LSTM models, to identify the best configuration among these architectures for climate-aware wind power simulation. The implementation of this framework involves the development of a Python package (CADNN) designed to support multiple tasks, including statistical analysis of the climate data, data visualization, preprocessing, DNN training, and performance evaluation. We demonstrate that the DNN models, when integrated with climate data, significantly enhance forecasting accuracy. This climate-aware approach offers a deeper understanding of the time-dependent climate patterns that influence wind power generation, providing more accurate predictions and making it adaptable to other geographical regions.
Abstract:The sparse identification of nonlinear dynamical systems (SINDy) is a data-driven technique employed for uncovering and representing the fundamental dynamics of intricate systems based on observational data. However, a primary obstacle in the discovery of models for nonlinear partial differential equations (PDEs) lies in addressing the challenges posed by the curse of dimensionality and large datasets. Consequently, the strategic selection of the most informative samples within a given dataset plays a crucial role in reducing computational costs and enhancing the effectiveness of SINDy-based algorithms. To this aim, we employ a greedy sampling approach to the snapshot matrix of a PDE to obtain its valuable samples, which are suitable to train a deep neural network (DNN) in a SINDy framework. SINDy based algorithms often consist of a data collection unit, constructing a dictionary of basis functions, computing the time derivative, and solving a sparse identification problem which ends to regularised least squares minimization. In this paper, we extend the results of a SINDy based deep learning model discovery (DeePyMoD) approach by integrating greedy sampling technique in its data collection unit and new sparsity promoting algorithms in the least squares minimization unit. In this regard we introduce the greedy sampling neural network in sparse identification of nonlinear partial differential equations (GN-SINDy) which blends a greedy sampling method, the DNN, and the SINDy algorithm. In the implementation phase, to show the effectiveness of GN-SINDy, we compare its results with DeePyMoD by using a Python package that is prepared for this purpose on numerous PDE discovery
Abstract:The discovery of governing equations from data has been an active field of research for decades. One widely used methodology for this purpose is sparse regression for nonlinear dynamics, known as SINDy. Despite several attempts, noisy and scarce data still pose a severe challenge to the success of the SINDy approach. In this work, we discuss a robust method to discover nonlinear governing equations from noisy and scarce data. To do this, we make use of neural networks to learn an implicit representation based on measurement data so that not only it produces the output in the vicinity of the measurements but also the time-evolution of output can be described by a dynamical system. Additionally, we learn such a dynamic system in the spirit of the SINDy framework. Leveraging the implicit representation using neural networks, we obtain the derivative information -- required for SINDy -- using an automatic differentiation tool. To enhance the robustness of our methodology, we further incorporate an integral condition on the output of the implicit networks. Furthermore, we extend our methodology to handle data collected from multiple initial conditions. We demonstrate the efficiency of the proposed methodology to discover governing equations under noisy and scarce data regimes by means of several examples and compare its performance with existing methods.