The discovery of governing equations from data has been an active field of research for decades. One widely used methodology for this purpose is sparse regression for nonlinear dynamics, known as SINDy. Despite several attempts, noisy and scarce data still pose a severe challenge to the success of the SINDy approach. In this work, we discuss a robust method to discover nonlinear governing equations from noisy and scarce data. To do this, we make use of neural networks to learn an implicit representation based on measurement data so that not only it produces the output in the vicinity of the measurements but also the time-evolution of output can be described by a dynamical system. Additionally, we learn such a dynamic system in the spirit of the SINDy framework. Leveraging the implicit representation using neural networks, we obtain the derivative information -- required for SINDy -- using an automatic differentiation tool. To enhance the robustness of our methodology, we further incorporate an integral condition on the output of the implicit networks. Furthermore, we extend our methodology to handle data collected from multiple initial conditions. We demonstrate the efficiency of the proposed methodology to discover governing equations under noisy and scarce data regimes by means of several examples and compare its performance with existing methods.