Abstract:Machine unlearning, where users can request the deletion of a forget dataset, is becoming increasingly important because of numerous privacy regulations. Initial works on ``exact'' unlearning (e.g., retraining) incur large computational overheads. However, while computationally inexpensive, ``approximate'' methods have fallen short of reaching the effectiveness of exact unlearning: models produced fail to obtain comparable accuracy and prediction confidence on both the forget and test (i.e., unseen) dataset. Exploiting this observation, we propose a new unlearning method, Adversarial Machine UNlearning (AMUN), that outperforms prior state-of-the-art (SOTA) methods for image classification. AMUN lowers the confidence of the model on the forget samples by fine-tuning the model on their corresponding adversarial examples. Adversarial examples naturally belong to the distribution imposed by the model on the input space; fine-tuning the model on the adversarial examples closest to the corresponding forget samples (a) localizes the changes to the decision boundary of the model around each forget sample and (b) avoids drastic changes to the global behavior of the model, thereby preserving the model's accuracy on test samples. Using AMUN for unlearning a random $10\%$ of CIFAR-10 samples, we observe that even SOTA membership inference attacks cannot do better than random guessing.
Abstract:Transferability of adversarial examples is a well-known property that endangers all classification models, even those that are only accessible through black-box queries. Prior work has shown that an ensemble of models is more resilient to transferability: the probability that an adversarial example is effective against most models of the ensemble is low. Thus, most ongoing research focuses on improving ensemble diversity. Another line of prior work has shown that Lipschitz continuity of the models can make models more robust since it limits how a model's output changes with small input perturbations. In this paper, we study the effect of Lipschitz continuity on transferability rates. We show that although a lower Lipschitz constant increases the robustness of a single model, it is not as beneficial in training robust ensembles as it increases the transferability rate of adversarial examples across models in the ensemble. Therefore, we introduce LOTOS, a new training paradigm for ensembles, which counteracts this adverse effect. It does so by promoting orthogonality among the top-$k$ sub-spaces of the transformations of the corresponding affine layers of any pair of models in the ensemble. We theoretically show that $k$ does not need to be large for convolutional layers, which makes the computational overhead negligible. Through various experiments, we show LOTOS increases the robust accuracy of ensembles of ResNet-18 models by $6$ percentage points (p.p) against black-box attacks on CIFAR-10. It is also capable of combining with the robustness of prior state-of-the-art methods for training robust ensembles to enhance their robust accuracy by $10.7$ p.p.