Abstract:Pneumonia is a life-threatening lung infection resulting from several different viral infections. Identifying and treating pneumonia on chest X-ray images can be difficult due to its similarity to other pulmonary diseases. Thus, the existing methods for predicting pneumonia cannot attain substantial levels of accuracy. Therefore, this paper presents a computer-aided classification of pneumonia, coined as Ensemble Learning (EL), to simplify the diagnosis process on chest X-ray images. Our proposal is based on Convolutional Neural Network (CNN) models, which are pre-trained CNN models that have been recently employed to enhance the performance of many medical tasks instead of training CNN models from scratch. We propose to use three well-known CNN pre-trained (DenseNet169, MobileNetV2 and Vision Transformer) using the ImageNet database. Then, these models are trained on the chest X-ray data set using fine-tuning. Finally, the results are obtained by combining the extracted features from these three models during the experimental phase. The proposed EL approach outperforms other existing state-of-the-art methods, and it obtains an accuracy of 93.91% and a F1-Score of 93.88% on the testing phase.
Abstract:E-Commerce (EC) websites provide a large amount of useful information that exceed human cognitive processing ability. In order to help customers in comparing alternatives when buying a product, previous studies designed opinion summarization systems based on customer reviews. They ignored templates' information provided by manufacturers, although these descriptive information have much product aspects or characteristics. Therefore, this paper proposes a methodology coined as SEOpinion (Summa-rization and Exploration of Opinions) which provides a summary for the product aspects and spots opinion(s) regarding them, using a combination of templates' information with the customer reviews in two main phases. First, the Hierarchical Aspect Extraction (HAE) phase creates a hierarchy of product aspects from the template. Subsequently, the Hierarchical Aspect-based Opinion Summarization (HAOS) phase enriches this hierarchy with customers' opinions; to be shown to other potential buyers. To test the feasibility of using Deep Learning-based BERT techniques with our approach, we have created a corpus by gathering information from the top five EC websites for laptops. The experimental results show that Recurrent Neural Network (RNN) achieves better results (77.4% and 82.6% in terms of F1-measure for the first and second phase) than the Convolutional Neural Network (CNN) and the Support Vector Machine (SVM) technique.
Abstract:Recently, Deep Learning (DL) approaches have been applied to solve the Sentiment Classification (SC) problem, which is a core task in reviews mining or Sentiment Analysis (SA). The performances of these approaches are affected by different factors. This paper addresses these factors and classifies them into three categories: data preparation based factors, feature representation based factors and the classification techniques based factors. The paper is a comprehensive literature-based survey that compares the performance of more than 100 DL-based SC approaches by using 21 public datasets of reviews given by customers within three specific application domains (products, movies and restaurants). These 21 datasets have different characteristics (balanced/imbalanced, size, etc.) to give a global vision for our study. The comparison explains how the proposed factors quantitatively affect the performance of the studied DL-based SC approaches.
Abstract:The Internet of Medical Things (IoMT) has dramatically benefited medical professionals that patients and physicians can access from all regions. Although the automatic detection and prediction of diseases such as melanoma and leukemia is still being researched and studied in IoMT, existing approaches are not able to achieve a high degree of efficiency. Thus, with a new approach that provides better results, patients would access the adequate treatments earlier and the death rate would be reduced. Therefore, this paper introduces an IoMT proposal for medical images classification that may be used anywhere, i.e. it is an ubiquitous approach. It was design in two stages: first, we employ a Transfer Learning (TL)-based method for feature extraction, which is carried out using MobileNetV3; second, we use the Chaos Game Optimization (CGO) for feature selection, with the aim of excluding unnecessary features and improving the performance, which is key in IoMT. Our methodology was evaluated using ISIC-2016, PH2, and Blood-Cell datasets. The experimental results indicated that the proposed approach obtained an accuracy of 88.39% on ISIC-2016, 97.52% on PH2, and 88.79% on Blood-cell. Moreover, our approach had successful performances for the metrics employed compared to other existing methods.
Abstract:Federated learning is a very convenient approach for scenarios where (i) the exchange of data implies privacy concerns and/or (ii) a quick reaction is needed. In smart healthcare systems, both aspects are usually required. In this paper, we work on the first scenario, where preserving privacy is key and, consequently, building a unique and massive medical image data set by fusing different data sets from different medical institutions or research centers (computation nodes) is not an option. We propose an ensemble federated learning (EFL) approach that is based on the following characteristics: First, each computation node works with a different data set (but of the same type). They work locally and apply an ensemble approach combining eight well-known CNN models (densenet169, mobilenetv2, xception, inceptionv3, vgg16, resnet50, densenet121, and resnet152v2) on Chest X-ray images. Second, the best two local models are used to create a local ensemble model that is shared with a central node. Third, the ensemble models are aggregated to obtain a global model, which is shared with the computation nodes to continue with a new iteration. This procedure continues until there are no changes in the best local models. We have performed different experiments to compare our approach with centralized ones (with or without an ensemble approach)\color{black}. The results conclude that our proposal outperforms these ones in Chest X-ray images (achieving an accuracy of 96.63\%) and offers very competitive results compared to other proposals in the literature.