Personal Health Data Science, Sano - Centre for Computational Personalised Medicine
Abstract:Cognitive Architectures are the forefront of our research into developing an artificial cognition. However, they approach the problem from a separated memory and program model of computation. This model of computation poses a fundamental problem: the knowledge retrieval heuristic. In this paper we propose to solve this problem by using a new model of computation, one where the memory and the program are united: the Function-Representation. We propose a novel model of computation based on implementing and using these Function-Representations, and we explore its potential through mathematical definitions and proofs. We also talk about different ways to organise multiple Function-Representations, and explore the kind of functions that these Function-Representations can implement. Finally, we also explore the limitations of our proposal.
Abstract:Cognitive Architectures are the forefront of our research into developing an artificial cognition. However, they approach the problem from a separated memory and program model of computation. This model of computation poses a fundamental problem: the knowledge retrieval heuristic. In this paper we propose to solve this problem by using a new model of computation, one where the memory and the program are united: the Function-Representation. We propose a whole framework about how to implement and use these Function-Representations, and we explore their potential through mathematical definitions and proofs. We also talk about different ways to organise multiple Function-Representations, and explore the kind of functions that these Function-Representations can implement. Finally, we also explore the limitations of our proposal.
Abstract:Knowledge discovery is key to understand and interpret a dataset, as well as to find the underlying relationships between its components. Unsupervised Cognition is a novel unsupervised learning algorithm that focus on modelling the learned data. This paper presents three techniques to perform knowledge discovery over an already trained Unsupervised Cognition model. Specifically, we present a technique for pattern mining, a technique for feature selection based on the previous pattern mining technique, and a technique for dimensionality reduction based on the previous feature selection technique. The final goal is to distinguish between relevant and irrelevant features and use them to build a model from which to extract meaningful patterns. We evaluated our proposals with empirical experiments and found that they overcome the state-of-the-art in knowledge discovery.
Abstract:Unsupervised learning methods have a soft inspiration in cognition models. To this day, the most successful unsupervised learning methods revolve around clustering samples in a mathematical space. In this paper we propose a state-of-the-art primitive-based unsupervised learning approach for decision-making inspired by novel cognition models. This representation-centric approach models the input space constructively as a distributed hierarchical structure in an input-agnostic way. We compared our approach with current state-of-the-art in unsupervised learning classification, and with current state-of-the-art in cancer type classification. We show how our proposal outperforms previous state-of-the-art. We also evaluate some cognition-like properties of our proposal where it not only outperforms the compared algorithms (even supervised learning ones), but it also shows a different, more cognition-like, behaviour.
Abstract:The Artificial Intelligence field seldom address the development of a fundamental building piece: a framework, methodology or algorithm to automatically build hierarchies of abstractions. This is a key requirement in order to build intelligent behaviour, as recent neuroscience studies clearly expose. In this paper we present a primitive-based framework to automatically generate hierarchies of constructive archetypes, as a theory of how to generate hierarchies of abstractions. We assume the existence of a primitive with very specific characteristics, and we develop our framework over it. We prove the effectiveness of our framework through mathematical definitions and proofs. Finally, we give a few insights about potential uses of our framework and the expected results.
Abstract:The Artificial Intelligence field is flooded with optimisation methods. In this paper, we change the focus to developing modelling methods with the aim of getting us closer to Artificial General Intelligence. To do so, we propose a novel way to interpret reality as an information source, that is later translated into a computational framework able to capture and represent such information. This framework is able to build elements of classical cognitive architectures, like Long Term Memory and Working Memory, starting from a simple primitive that only processes Spatial Distributed Representations. Moreover, it achieves such level of verticality in a seamless scalable hierarchical way.
Abstract:Noise is a fundamental problem in learning theory with huge effects in the application of Machine Learning (ML) methods, due to real world data tendency to be noisy. Additionally, introduction of malicious noise can make ML methods fail critically, as is the case with adversarial attacks. Thus, finding and developing alternatives to improve robustness to noise is a fundamental problem in ML. In this paper, we propose a method to deal with noise: mitigating its effect through the use of data abstractions. The goal is to reduce the effect of noise over the model's performance through the loss of information produced by the abstraction. However, this information loss comes with a cost: it can result in an accuracy reduction due to the missing information. First, we explored multiple methodologies to create abstractions, using the training dataset, for the specific case of numerical data and binary classification tasks. We also tested how these abstractions can affect robustness to noise with several experiments that explore the robustness of an Artificial Neural Network to noise when trained using raw data \emph{vs} when trained using abstracted data. The results clearly show that using abstractions is a viable approach for developing noise robust ML methods.