Abstract:We introduce a lightweight, flexible and end-to-end trainable probability density model parameterized by a constrained Fourier basis. We assess its performance at approximating a range of multi-modal 1D densities, which are generally difficult to fit. In comparison to the deep factorized model introduced in [1], our model achieves a lower cross entropy at a similar computational budget. In addition, we also evaluate our method on a toy compression task, demonstrating its utility in learned compression.
Abstract:Traditional physics-based approaches to infer sub-surface properties such as full-waveform inversion or reflectivity inversion are time-consuming and computationally expensive. We present a deep-learning technique that eliminates the need for these computationally complex methods by posing the problem as one of domain transfer. Our solution is based on a deep convolutional generative adversarial network and dramatically reduces computation time. Training based on two different types of synthetic data produced a neural network that generates realistic velocity models when applied to a real dataset. The system's ability to generalize means it is robust against the inherent occurrence of velocity errors and artifacts in both training and test datasets.