Abstract:Over the past decade, we have witnessed the rise of misinformation on the Internet, with online users constantly falling victims of fake news. A multitude of past studies have analyzed fake news diffusion mechanics and detection and mitigation techniques. However, there are still open questions about their operational behavior such as: How old are fake news websites? Do they typically stay online for long periods of time? Do such websites synchronize with each other their up and down time? Do they share similar content through time? Which third-parties support their operations? How much user traffic do they attract, in comparison to mainstream or real news websites? In this paper, we perform a first of its kind investigation to answer such questions regarding the online presence of fake news websites and characterize their behavior in comparison to real news websites. Based on our findings, we build a content-agnostic ML classifier for automatic detection of fake news websites (i.e. accuracy) that are not yet included in manually curated blacklists.
Abstract:Over the past few years, we have been witnessing the rise of misinformation on the Web. People fall victims of fake news during their daily lives and assist their further propagation knowingly and inadvertently. There have been many initiatives that are trying to mitigate the damage caused by fake news, focusing on signals from either domain flag-lists, online social networks or artificial intelligence. In this work, we present Check-It, a system that combines, in an intelligent way, a variety of signals into a pipeline for fake news identification. Check-It is developed as a web browser plugin with the objective of efficient and timely fake news detection, respecting the user's privacy. Experimental results show that Check-It is able to outperform the state-of-the-art methods. On a dataset, consisting of 9 millions of articles labeled as fake and real, Check-It obtains classification accuracies that exceed 99%.