Abstract:Salient Object Detection (SOD) with deep learning often requires substantial computational resources and large annotated datasets, making it impractical for resource-constrained applications. Lightweight models address computational demands but typically strive in complex and scarce labeled-data scenarios. Feature Learning from Image Markers (FLIM) learns an encoder's convolutional kernels among image patches extracted from discriminative regions marked on a few representative images, dismissing large annotated datasets, pretraining, and backpropagation. Such a methodology exploits information redundancy commonly found in biomedical image applications. This study presents methods to learn dilated-separable convolutional kernels and multi-dilation layers without backpropagation for FLIM networks. It also proposes a novel network simplification method to reduce kernel redundancy and encoder size. By combining a FLIM encoder with an adaptive decoder, a concept recently introduced to estimate a pointwise convolution per image, this study presents very efficient (named flyweight) SOD models for biomedical images. Experimental results in challenging datasets demonstrate superior efficiency and effectiveness to lightweight models. By requiring significantly fewer parameters and floating-point operations, the results show competitive effectiveness to heavyweight models. These advances highlight the potential of FLIM networks for data-limited and resource-constrained applications with information redundancy.
Abstract:Accurate brain tumor segmentation in the early stages of the disease is crucial for the treatment's effectiveness, avoiding exhaustive visual inspection of a qualified specialist on 3D MR brain images of multiple protocols (e.g., T1, T2, T2-FLAIR, T1-Gd). Several networks exist for Glioma segmentation, being nnU-Net one of the best. In this work, we evaluate self-calibrated convolutions in different parts of the nnU-Net network to demonstrate that self-calibrated modules in skip connections can significantly improve the enhanced-tumor and tumor-core segmentation accuracy while preserving the wholetumor segmentation accuracy.